Computer Science and Information Engineering
Numerical Methods

Examination I

09:10 – 10:10 am
November 17, 200

This is an Open Book examination. Only notes or references belonging to you are acceptable. The examination consists of FOUR problems of equal weight.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Maximum</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 1</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Problem 2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Problem 3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Problem 4</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1: [50 points]

Show how one can rearrange the expression $e^x - e^{-x}$ so as to avoid cancellation when x is close to 0.
Problem 2: [50 points]
Let A be a matrix given by
\[
A = \begin{bmatrix}
-1 & 2 & 1 \\
-2 & 3 & 1 \\
-1 & 2 & 3
\end{bmatrix}.
\]

(a) Using Gaussian elimination with partial pivoting, obtain the LU decomposition of PA, where P is a permutation matrix. That is, $PA = LU$. Show all steps.

(b) What is the determinant of A^{-1}, $\det(A^{-1})$?
Problem 3: [50 points]

Suppose

\[f = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}. \]

(a) Consider the linear system \(Ax = f \) where \(A \) is given in Problem 2. Use the decomposition in Problem 2 to obtain \(x \) in \(LUx = Pf \).

(b) Obtain \(\| A \|_\infty \) and \(\| A^{-1} \|_\infty \).
Problem 4: [50 points]

True or false. Please verify your every answer shortly.

(a) If $\|A\|_1 \leq 1$, then $|a_{ij}| \leq 1$, where A is a matrix.

(b) If $\|A\|_1 \leq \|B\|_1$, then $|a_{ij}| \leq |b_{ij}|$, where A and B are matrices.

(c) For any vector x of degree n, $\frac{1}{n} \|x\|_1 \leq \|x\|_\infty \leq \|x\|_1$.

(d) Consider the two equations in x, and y

\[
\begin{align*}
x + \beta y &= 1 \\
\beta x + y &= 0;
\end{align*}
\]

$\beta > 0$.

The condition number of the problem of determining $y(\beta)$ alone, is given by

\[
\frac{2\beta^2}{(1 - \beta^2)}.
\]

(e) Let $z = (0.3)_{10}$. Then, z has a nonterminating binary representation.