1. Find an dfa that accepts the following language

\[L(ab^*a^*) \cap L(a^*b^*a) . \]

Please also write the corresponding regular expression.

Answer:
The dfa’s \(M_1 = (Q, \Sigma, \delta_1, q_0, F_1) \) and \(M_2 = (P, \Sigma, \delta_2, p_0, F_2) \) for \(L(ab^*a^*) \) and \(L(a^*b^*a) \) are as below.

![DFAs](image)

Then, we can use the constructive proof used in Theorem 4.1 to derive a dfa \(M' \) for

\[L(ab^*a^*) \cap L(a^*b^*a) . \]

Let \(M' = M_1 \cap M_2 = (Q \times P, \Sigma, \delta', (q_0, p_0), F') \) where the transition function \(\delta' \) is defined as follows.

<table>
<thead>
<tr>
<th>(a)</th>
<th>((q_0, p_0))</th>
<th>((q_1, p_1))</th>
<th>((q_2, p_1))</th>
<th>((q_1, p_2))</th>
<th>((q_2, p_2))</th>
<th>((q_2, p_3))</th>
<th>((q_2, p_4))</th>
<th>((q_3, p_2))</th>
<th>((q_3, p_3))</th>
<th>((q_3, p_4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>((q_1, p_1))</td>
<td>((q_2, p_1))</td>
<td>((q_2, p_2))</td>
<td>((q_1, p_2))</td>
<td>((q_3, p_2))</td>
<td>((q_2, p_3))</td>
<td>((q_2, p_4))</td>
<td>((q_3, p_3))</td>
<td>((q_3, p_4))</td>
<td>((q_3, p_4))</td>
</tr>
</tbody>
</table>

Note that, the final states in \(M' \) are \((q_2, p_1) \) and \((q_2, p_3) \). The transition graph of \(M' \) is given below. The corresponding regular expression of \(L(M') \) is \(a(b^*|a^*)a. \)
2. (10 pts) Let $L_1 = L(a^*baa^*)$ and $L_2 = L(aba^*)$. Find L_1 / L_2

Answer:
$L_1 / L_2 = L(a^*)$.

3. (20 pts) The tail of a language L is defined as the set of all suffixes of its strings, that is

$$tail(L) = \{ y : xy \in L \text{ for some } x \in \Sigma^* \}.$$

Show that if L is regular, so is $tail(L)$.

Answer:
This problem is straightforward. You need to create a finite automaton M' for the tail of the given language L. Suppose there is an nfa $M = (Q, \Sigma, \delta, q_0, F)$ accepting L. To construct M', we consider the set of all states with $\delta(q,w) \in F$ for some w. Add a new initial state and λ-transition function from it to all the above states to M to derive M'. Then, you need to show that $w \in tail(L)$ if and only if M' accepts w.

4. (20 pts) Show that there exists an algorithm that can determine for every regular language L, whether or not $|L| \geq 5$.

Answer: Look at the dfa of L. If there is a cycle, then $|L| \geq 5$. Otherwise, check the number of all possible paths ending with a final states.

5. (20 pts) Let $L = \{ w : n_a(w) = n_b(w) \}$. Please determine that L^* is regular or not? Please provide your arguments.

Answer:
Pick $\{a^m b^m \}$ as starting string. We can see L is not regular. Also, here $L = L^*$. Hence, L^* is not regular.

6. (20 pts) Prove that the following languages are not regular.

 (a) $L = \{a^n b^l a^k : k \geq n + l \}$.
 (b) $L = \{a^n b^l a^k : k \neq n + l \}$.
 (c) $L = \{a^n b^l a^k : n = l \text{ or } l \neq k \}$.
 (d) $L = \{ w : n_a(w) \neq n_b(w) \}$.
 (e) $L = \{ w w : w \in \{ a, b \}^* \}$.
 (f) $L = \{ w w w w^R : w \in \{ a, b \}^* \}$.

Answer:

 (a) $L = \{a^n b^l a^k : k \geq n + l \}$. Given m, we pick $w = a^m b^m a^{2m}$ with $|w| \geq m$. Let $w = xyz$ where $|xy| \leq m$ and $|y| \geq 1$. Then, $y = a^k$, where $1 \leq k \leq m$. Now, we consider the pumping strings

$$w_i = a^{m+(i-1)k} b^m a^{2m}.$$

If $i \geq 2$, then $m + (i - 1)k > m$. So, $w_i \notin L$. According to the Pumping Lemma, L is not regular.
(b) This can be done by first solving that \(\mathcal{L} = \{ a^n b^k a^k : k = n + l \} \) is not regular as in the previous problem. Then \(L \) is not regular; otherwise \(\mathcal{L} \) is regular. The other way to show this is to apply the pumping lemma directly.

Given \(m \). We pick \(w = a^m b^m a^{2m+1} \) with \(|w| \geq m \). Consider \(w = xyz \) where \(|xy| \leq m \) and \(|y| \geq 1 \). Then, \(y = a^k \), where \(1 \leq k \leq m \). Now, we choose \(y = a \). consider the pumping strings

\[w_i = a^{m+(i-1)b^m} a^{2m+1}. \]

When \(i = 2 \), \(w_2 = a^m b^m a^{2m+1} \notin L \). According to the Pumping Lemma, \(L \) is not regular.

(c) \(L = \{ a^n b^k a^k : n = l \ or \ l \neq k \} \). Given \(m \), we pick \(w = a^m b^m a^m \) with \(|w| \geq m \). Let \(w = xyz \) where \(|xy| \leq m \) and \(|y| \geq 1 \). Then, \(y = a^k \), where \(1 \leq k \leq m \). Now, we consider the pumping strings

\[w_i = a^{m+(i-1)k} b^m a^m. \]

When \(i = 0 \), \(w_0 = a^{m-k} b^m a^m \notin L \). According to the Pumping Lemma, \(L \) is not regular.

(d) If \(L = \{ w : n_a(w) \neq n_b(w) \} \) is regular, then \(\mathcal{L} = \{ w : n_a(w) = n_b(w) \} \) is regular. Note that \(L(a^* b^*) \cap \mathcal{L} = L(a^* b^n) \). If we want to prove \(L = \{ w : n_a(w) \neq n_b(w) \} \) is not regular, we only need to prove \(L(a^n b^n) \) is not regular. This will imply that \(L = \{ w : n_a(w) \neq n_b(w) \} \) is not regular.

Given \(m \), we pick \(w = a^m b^m \) with \(|w| \geq m \). Let \(w = xyz \) where \(|xy| \leq m \) and \(|y| \geq 1 \). Then, \(y = a^k \), where \(1 \leq k \leq m \). Now, we consider the pumping strings

\[w_i = a^{m+(i-1)k} b^m. \]

When \(i = 0 \), \(w_0 = a^{m-k} b^m \notin L(a^n b^n) \). According to the Pumping Lemma, \(L(a^n b^n) \) is not regular. Hence, \(L = \{ w : n_a(w) \neq n_b(w) \} \) is not regular.

(e) Given \(m \), we pick \(w = a^m b^m a^m b^m \) with \(|w| \geq m \). Let \(w = xyz \) where \(|xy| \leq m \) and \(|y| \geq 1 \). Then, \(y = a^k \), where \(1 \leq k \leq m \). Now, we consider the pumping strings

\[w_i = a^{m+(i-1)k} b^m a^m b^m. \]

When \(i = 0 \), \(w_0 = a^{m-k} b^m a^m b^m \notin L \). According to the Pumping Lemma, \(L \) is not regular.

(f) Given \(m \), we pick \(w = a^m b^m a^m b^m a^m b^m a^m \) with \(|w| \geq m \). Let \(w = xyz \) where \(|xy| \leq m \) and \(|y| \geq 1 \). Then, \(y = a^k \), where \(1 \leq k \leq m \). Now, we consider the pumping strings

\[w_i = a^{m+(i-1)k} b^m a^m b^m a^m b^m a^m. \]

When \(i = 0 \), \(w_0 = a^{m-k} b^m a^m b^m a^m b^m a^m \notin L \). According to the Pumping Lemma, \(L \) is not regular.

7. (20 pts) Consider the language

\[L = \{ a^n : n \text{ is not a perfect square} \} \]

(a) Show that this language is not regular by applying the pumping lemma directly.
(b) Then show the same thing by using the closure properties of regular languages.

Answer:

(a) We have to pick a very special string a^{M^2+1} to start with. Suppose the middle string has length k; then the pumped string is $a^{M^2+1+(i-1)k}$. If we now pick $M = m!$, then i can be chosen so that $M^2 + 1 + (i - 1)k = (M + 1)^2$.

(b) \mathcal{L} is not regular, so does L.

Note: Please use A4 papers to write up your homework solutions and do not forget to leave your name and student ID on it. If you fail to do so, you might get 0 on your homework grade. If you use more than one sheet for your homework solutions, please staple them before you hand in your homework.