Greedy Modular Eigenspace Method for Hyperspectral Image Classification

Yang-Lang Chang
Department of Electrical Engineering
National Taipei University of Technology
Taipei, Taiwan, ROC
E-mail: ylchang@ntut.edu.tw

The greedy modular eigenspace (GME) was developed by grouping highly correlated hyper-spectral bands into a smaller subset of band modular regardless of the original order in terms of wavelengths. The GME has shown effective in hyperspectral feature extraction. It utilizes the inherent separability of different classes in hyperspectral images to reduce dimensionality and further to generate a unique GME feature. The GME makes use of the data correlation matrix to reorder spectral bands from which a group of feature eigenspaces can be generated to reduce dimensionality. It can be implemented as a feature extractor to generate a particular feature eigenspace for each of the material classes present in hyperspectral data. It avoids the bias problems of transforming the information into linear combinations of bands as does the traditional principal components analysis (PCA). Compared to the conventional PCA, it not only significantly increases the accuracy of image classification but also dramatically improves the eigen-decomposition computational complexity. Experimental results demonstrate that the proposed GME feature extractor is very effective and can be used as an alternative compared to other feature extraction algorithms.

INTRODUCTION

Due to recent advances in remote sensing instruments the number of spectral bands used in these instruments to collect data has significantly increased. It covers an abundance of applications from satellite imaging, monitoring systems to medical imaging and industrial product inspection. But this improved spectral resolution also comes at a price, known as the curse of dimensionality (Bellman, 1961) [1]. The term has been given a great deal of attention by researchers in the statistic, database, and data mining communities to describe the difficulties associated with the feasibility of distribution estimation in high-dimensional datasets. Numerous techniques have been developed for feature extraction to reduce dimensionality without loss of class separability. The most widely used approach is the principal components analysis (PCA) which reorganizes the data coordinates in accordance with
data variances so that features are extracted based on the magnitudes of their corresponding eigenvalues (Richards and Jia, 1999) [2]. *Fisher discriminant analysis* uses the between-class and within-class variances to extract desired features and to reduce dimensionality (Duda and Hart, 1973) [3]. Another well-known approaches is the *orthogonal subspace projection* (OSP) recently developed by Harsanyi and Chang (1994) [4]. OSP projects all undesired pixels into a space orthogonal to the space generated by the desired pixels to achieve dimensionality reduction.

Most of them focus on the estimation of statistics at full dimensionality to extract classification features. For example, conventional PCA assumes the covariances of different classes are the same and the potential differences between class covariances are not explored. In contrast, we propose a novel *greedy modular eigenspace* (GME) method overcomes the dependency on global statistics, while preserving the inherent separability of the different classes. It utilizes the separability of different classes in hyperspectral images to reduce dimensionality and further to generate a unique GME feature. Most classifiers seek only one set of features that discriminates all classes simultaneously. This not only requires a large number of features, but also increases the complexity of the potential decision boundary. Our proposed method makes use of the GME to develop a GME-based feature extraction for hyperspectral imagery. It’s developed for land cover classification based on feature selection of the same scene collected from hyperspectral remote sensing images. It presents a framework for feature extraction of hyperspectral remote sensing images, which consists of two algorithms, referred to as the GME (Chang, 2003) [5] and *feature scale uniformity transformation* (GME/FSUT) (Chang, 2004) [6]. The GME method is designed to extract features by a simple and efficient GME feature module, while the FSUT is performed to fuse most correlated features from different data sources. They present a framework for multisource fusions of remote sensing images.

The GME is a spectral-based technique that explores the correlation among bands. Reordering the bands regardless of the original order in terms of wavelengths in high-dimensional datasets is an important characteristic of GME. It performs a greedy iteration search algorithm which reorders the correlation coefficients in the data correlation matrix row by row, and column by column to group highly correlated bands as GME feature eigenspaces that can be further used for feature extractions. Each ground cover type or material class has a distinct set of GME-generated feature eigenspaces. The FSUT makes use of the GME feature extraction method which tends to equalize all the bands in a subgroup with highly correlated variances to avoid a potential bias problem that may occur in conventional PCA (Jia, 1999) [7]. This fast feature extraction algorithm is proposed to unify GME sets of different classes. It takes advantage of the special characteristics of GME to concentrate GME sets of different classes into the most common feature subspaces. A distance measure based on GME was then applied to decompose the similarity for land cover classification purposes.
The goal of our proposed method is to develop a GME-based feature extraction technique that combines different datasets in such a way that new types of data products can be produced. In our previous work (Chang, 2003) [5], the GME was developed by grouping highly correlated bands into a small set of bands. After finding a GME set, a FSUT is next performed to unify the feature scales of these GME. The GME/FSUT carries out a feature extraction for the GME of different classes. To demonstrate the advantages of the proposed method, we compared several different configurations, which were categorized by their use of different options and distance measures.

This article presents a novel feature extraction algorithm. The approach makes use of the statistical properties of the abundant feature characteristics of hyperspectral datasets while taking advantage of the GME feature extraction method (Chang, 2003) [5]. The performance of the propose method is evaluated by MODIS/ASTER airborne simulator (MASTER) images for land cover classification during the PacRim II campaign. Experimental results demonstrate that the proposed GME approach is an effective method for feature extractions. The rest of this article is organized as follows. In Section 2, the proposed GME/FSUT classifier is described in detail. In Section 3, a set of experiments is conducted to demonstrate the feasibility and utility of the proposed approach. Finally, in Section 4, several conclusions are presented.

METHODOLOGY

Referring to Fig. 1, there are four stages to implementing our proposed GME classification scheme.

1) A GME transformation algorithm is applied to achieve dimensionality reduction and feature extraction. 2) The second stage is a FSUT, which constructs an identical GME set for the purposes of the feature extraction and the feature selection. 3) The third stage is a threshold decomposition, which normalizes the scales of different feature bands. Then, a distance decomposition, also known as a similarity measure, is performed for the classification. 4) Finally, a classification process is performed for the classification.
Greedy Modular Eigenspaces

PCA has become the mainstream algorithm to advance the progress of high-dimensional data analysis in many fields such as noise-whitened, feature extraction, dimensionality reduction, data compression and target discrimination (Chang et al., 2002 and 2003) [8, 9]. The goal of PCA is to find the principal components with their directions along the maximum variances of a data matrix. Chang et al., 2002, demonstrated a feature selection method that used a loading factors matrix eigen-analysis-based prioritization and a divergence-based band decorrelation [8]. It fully exploited the usefulness of eigen-analysis for feature extraction in high-dimensional data classification. The conventional low-dimensional classification methods that used single-pixel-based similarity measures such like Gaussian maximum likelihood don’t work well in high-dimensional classification (Tu et al., 1998) [10]. Instead, the spectral correlation of pixel vectors for high-dimensional data sets can provide richer features to improve the classification accuracy. In addition, Chang et al., 2001, showed that the use of second-order statistics, such as PCA that utilizes covariance matrix, can improve hyperspectral classification performance more efficiently [11]. In this article, we also apply the second-order statistics to the proposed GME method to improve the classification accuracy.

A visual scheme to display the magnitude of correlation matrix for emphasizing the second-order statistics of high-dimensional data was proposed by Lee and Landgrebe, 1993 [12]. Shown in Fig. 2 is a correlation matrix pseudo-color map (CMPM) in which the gray scale is used to represent the magnitude of its corresponding correlation matrix. It is also equal to a modular subspace set Φ^i. Different material classes have different value sequences of correlation matrices. It can be treated as the special sequence codes for feature extractions. We define a correlation submatrix $c_{\Phi^i}(m_l \times m_l)$ which belongs to the l^{th} modular subspace Φ^i of a complete set Φ^i and given by

$$\Phi^i = (\Phi^i_1, \ldots, \Phi^i_l, \ldots, \Phi^i_n)$$

for a class ω_k, where m_l and n_l represent, respectively, the number of bands (feature spaces) in modular subspace Φ^i_l, and the total number of modular subspaces for a complete set Φ^i, i.e. $l \in \{1, \ldots, n_l\}$ as shown in Fig. 2. The original correlation matrix $c_{\Phi}(m_t \times m_t)$ is decomposed into

$$c_{\Phi}(m_t \times m_t) = c_{\Phi^i_1}(m_1 \times m_1) \cdots c_{\Phi^i_l}(m_l \times m_l) \cdots c_{\Phi^i_n}(m_n \times m_n)$$
FIG. 2: An example illustrates a CMPM with different gray levels and its corresponding correlation matrix with different correlation coefficients in percentage (White = 100; black = 0) for the class ω_k. Note that four squares with fine black borders represent the highly correlated modular subspaces which have higher correlation coefficient compared with their neighborhood.

We also define a complete modular subspace (CMS) (Chang, 2004a) [13] set which is composed of all possible combinations of the CMPM. There are $m!$ different CMPMs in a CMS set as shown in Fig. 3. Each different CMPM is associated with a unique sequence of band order. It needs $m!$ swapping operations by band order to find a complete and exhaustive CMS set. In Fig. 4, a visual interpretation is introduced to highlight the relations between swapping and rotating operations in terms of band order. The swapping operations which exchange the horizontal and vertical correlation coefficient lists row-by-row and column-by-column simultaneously in the correlation matrices c_{ij} is equivalent to the behavior of rotating operations. There is one optimal CMPM in a CMS set as shown in Fig. 3. This optimal CMPM is defined as a specific CMPM which is composed of a set of modular subspaces Φ_i, $1 \leq i \leq n_k$ $\in \Phi^i$. It has the highest correlated relations inside each individual modular subspace Φ_i^j. It tempts to reach the condition that the high correlated blocks (with high correlation coefficient values) are put together adjacenty, as near as possible, to construct the optimal modular subspace set,

$$\Phi^i = (\Phi^i_{11}, \ldots, \Phi^i_{1n}, \ldots, \Phi^i_{n1}, \ldots, \Phi^i_{nn})$$
FIG. 3: (a.) The initial CMPM for four original bands (A, B, C and D), \(m_t = 4 \), is applied to the exhaustive swapping operations by band order. Each corresponding correlation has different correlation coefficient in percentage as indicated in each box. (b.) An example shows a CMS set which is composed of 24 (\(m_t! = 4! \)) possible CMPMs. The CMPM with a dotted-line square is the optimal CMPM in a CMS set.

In the diagonal of CMPM. It is too expensive to make an exhaustive computation for a large amount of \(m_t \) to find an optimal CMPM in a CMS set. In order to overcome this drawback, we develop a fast searching algorithm, called greedy modular subspaces transformation (GMET), based on the fact that highly correlated bands often appear adjacent to each other for remote sensing high-dimensional data sets (Richards and Jia, 1999) [2] to construct an alternative greedy CMPM (modular subspace) instead of the optimal CMPM. This new defined greedy CMPM can be also treated as a GME feature module set \(\Phi_k \), which uses the same notation as the complete set \(\Phi \) defined in Eq. (1). It can not only reduce the redundant operations in finding the greedy CMPM but also provides an efficient method to construct GME sets which have suitable properties for feature extractions of high-dimensional data sets.

In this algorithm, every positive correlation coefficient \(c_{ij} \), which is an absolute value, is compared with a correlation coefficient threshold value \(0 \leq t_c \leq 1 \) by band order adjacently. A greedy searching iteration is initially carried out at \(c_{0,0} \equiv c_{\delta}(m_t \times m_t) \) as a new seed to build a GME set. All attributes of \(c_{\delta} (m_t \times m_t) \) are first set as available except \(c_{0,0} \). The proposed GMET is stated as follows.
FIG. 4: The rotation operation between the Block K and Block 2 is performed by swapping their horizontal and vertical correlation coefficient lists row-by-row and column-by-column. Note that a pair of blocks (squares) switched by this swapping operation in terms of band order should have the same size of any length along the diagonal of correlation matrices. The Fixed Blk 1 and Fixed Blk 2 will rotate 90 degrees at the same locations.

Step 1. Initialization: A new modular eigenspace $\Phi^i \in \Phi$ for a class ω_k is initialized by a new correlation coefficient $c_{d,d}$, where $c_{d,d}$ and d are defined as the first available element and its subindex in the diagonal list $[c_{0,0},...,c_{m_t-1,m_t-1}]$ of the correlation matrix c_X respectively. This diagonal coefficient $c_{d,d}$ is set to used and then assigned as the current $c_{i,j}$, i.e. the only one activated at the current time. Then, go to step 2. Note that this GMET algorithm is terminated if the last diagonal coefficient $c_{d,d}$ is already set to used and the last subgroup Φ^i_k of the GME has been obtained for class ω_k.

Step 2. If the column subindex j of the current $c_{i,j}$ has reached the last column (i.e. $j = m_t - 1$) in the correlation matrix, then a new modular eigenspace Φ^i is constructed with all used correlation coefficients $\in \Phi$, these used coefficients are then removed from the correlation matrix, and the algorithm goes to step 1 for another round to find a new modular eigenspace. Otherwise, it goes to step 3.

Step 3. GMET moves the current $c_{i,j}$ to the next adjacent column $c_{i,j+1}$ which will act as the current $c_{i,j}$, i.e. $c_{i,j} \rightarrow c_{i,j+1}$. If the current $c_{i,j}$ is available and its value is larger than t_c, then go to step 4. Otherwise, go to step 2.
Step 4. If \(j = d \), swap \(c_{*,j} \) with \(c_{*,d} \) and \(c_{j,*} \) with \(c_{d,*} \) respectively, where the asterisk symbol "*" indicates any row or column subindex in the correlation matrix. Fig. 4 and Fig. 5 show this mechanism graphically. The attributes of \(c_{d,*} \) and \(c_{*,d} \) are then marked used. Then let \(c_{i\rightarrow d,i} \) and \(c_{d,i\rightarrow d} \in \Phi_{k}^{i} \), where \(i \leftrightarrow d \) means including all coefficients between subindex \(i \) and subindex \(d \). Go to step 2.

Eventually, a GME set \(\Phi^{i} \) is composed. For convenience, we reorder every \(\Phi^{i} \) in \(\Phi^{i} \) according to their amount of feature bands in order. Based on the properties of correlation matrix, the GMET attempts to reorder \(c_{j,k} (m_{t}\times m_{t}) \) by directly swapping the positions of \(c_{j,k} \) rows by rows and columns by columns symmetrically regardless of the original bands order in the CMPM.

In this visualization scheme, we can calculate the GME efficiently and bypass the redundant procedures of reordering the original row data order before a new CMPM is composed. The computational complexity for finding the optimal CMPM by exhaustive swapping operation is on the order of \(O(m_{t}!) \) and it is \(O(m_{t}\times(m_{t}-1)/2) \) for constructing a GME based on the GMET, where \(m_{t} \) means the total number of the bands. For example, there are \(m_{t} (=35) \) bands of test data sets in our experiments and the total number of the candidate CMPMs in a CMS set is \(35! (= 1.033 \times 10^{40}) \). In the same condition, the total number of the candidate GME is \(35\times34/2 (= 595) \). The candidate CMPMs in a CMS set is almost \(1.736 \times 10^{37} \) times the computational complexity of the GME. Fig. 5 illustrates the original CMPM and the reordering CMPM after the GMET.

This GMET preserves the original information of a correlation matrix. The whole set of high-dimensional data is first divided into a highly correlated GME set \(\Phi^{i} \) for class \(\omega_{k} \) regardless of the original band order. An example in which the GMET was applied to real hyperspectral data is shown in Fig. 6. After finding the highly correlated GME sets \(\Phi^{i} \) for all classes, \(k \in \{1, \ldots, N\} \), the eigenspace projections are executed. Every different class has its singular ordering sets of GME. It can be interpreted as a unique feature for a distinguishable class in a specific type of high-dimensional sensor systems. Let \(m_{i} \) be the number of feature bands in \(\Phi^{i} \). Each \(\Phi^{i} \) square \((m_{i}\times m_{i}) \) is filled with an average value of the correlation coefficients \(c_{i,j} \) inside the \(\Phi^{i} \) as shown in Fig. 5 (c.). Compared to the conventional PCA, it not only dramatically improves the computational complexity but also consequently increases the accuracy of high-dimensional data classification.
There are some merits of using this scheme. 1) It downsizes the number of bands in each GME to speed up the computation compared to conventional PCA. 2) High correlated GME makes PCA work more efficiently due to the redundancy reduction property of PCA. 3) The highly related modular features for the dedicated training class tends to have a regular similar variance rather than the whole set of bands if the scale of the data is not well calibrated. It takes the advantage of avoiding the bias problems occurred by conventional PCA (Jia, 1999) [7]. 4) Most classifiers seek only one set of features that discriminates all classes simultaneously (Kumar et al., 2001) [14]. The proposed GME method provides distinct sets of features for different classes to overcome this problem and improves the classification accuracy. Different classes are best distinguishable by different GME feature sets.

After GMET, a GME set Φ^k is composed for land cover class ω_k. Fig. 5 illustrates the original correlation matrix map and the reordered one after a GMET. Each land cover type or material class has its uniquely ordered GME set. For instance, in our experiment, six land cover types were transformed into six different GME sets. These six classes are shown in Fig. 7. In this visualization scheme, we can build a GME efficiently and bypass the redundant procedures of rearranging the band
FIG. 6: The GME sets for different ground cover classes $\omega_k,...,\omega_j$. A GME set Φ^j is composed of a group of modular eigenspaces ($\Phi^j_1,...,\Phi^j_i,...,\Phi^j_k$).

order from the original high-dimensional datasets. Moreover, the GMET algorithm can tremendously reduce the eigen-decomposition computation compared to conventional PCA feature extraction. The computational complexity for conventional PCA is of the order of $O(m_t \times m_t)$ and it is $O(\sum_{k=1}^{n} m_i)$ for GME (Jia, 1999) [7]. The GME preserves the original information of a correlation matrix.

Feature Scale Uniformity Transformation

After fining GME sets Φ^j, a fast and effective GME/FSUT is performed to unify the feature scales of these GME sets to an identical GME set Φ_I. We uses intersection (AND) operations (Chang, 2004) [6] applied to the band numbers inside each GME module ω_k to unify the feature scales of different classes produced by GMET and construct an identical intersection GME (IGME) Φ_I set for all classes $\omega_k, k \in \{1, ..., N\}$. A concept block diagram of GME is shown in Fig. 8. Every different class has the same IGME set Φ_I after the GME.

The GME/FSUT performing a searching iteration to build an identical IGME set Φ_I is initially carried out on a newly formed IGME feature module Φ_{I_l} where $l \in \{1, ..., n\}$ and $\Phi_{I_l} \in \Phi_I$, in which the first band b_i, where $i \in \{1, ..., n\}$ and $i = 1$, of the largest GME module Φ^j_l is chosen to form a IGME set Φ_I. Each band b_i is assigned an attribute during a GME/FSUT. If the attribute of b_i is set as available, it means this b_i has not been yet assigned to any identical IGME set Φ_I. If a b_i is assigned to a Φ_I, the attribute of this b_i is set to used. All attributes of the original $b_i, i \in \{1, ..., n\}$, are first set as available.
FIG. 7: GME sets for the six ground cover types used in the experiment. Each of them can be treated as a unique feature for a distinguishable class.

The GME/FSUT was applied to three land cover types used in our experiment as shown in Fig. 9. The proposed GME/FSUT algorithm is as follows:

Step 1. Initialization: a new IGME feature module $\Phi_{\ell'}$, where $\Phi_{\ell'} \subseteq \Phi_{\ell}$, is initialized by a new band b_i inside a GME module Φ^t, where b_i is defined as the first available band and Φ^t as the largest GME module of the class ω_k. This new band b_i is assigned to the newly created IGME feature module $\Phi_{\ell'}$ and is then set as the current b_{i_c}, i.e. the only one activated at the current time. Then, go to step 2. Note that this GME/FSUT algorithm is terminated if the last band b_i is already set to used and the final IGME feature module $\Phi_{\ell'}$, $\Phi_{\ell'} \subseteq \Phi_{\ell}$, has been obtained.

Step 2. If the current band b_i and all its related bands have all been set to used, then a IGME feature module $\Phi_{\ell'}$ is constructed with all used bands, these used bands are removed from the band list, and the GME/FSUT algorithm goes to step 1 for another round to find a new IGME feature module $\Phi_{\ell'}$. Otherwise, it goes to step 3.
Step 3. As illustrated in Fig. 10, the GME/FSUT links all the same bands b_i located in different classes ω_k, $k \in \{1, ..., N\}$, together with arrow lines in an intersection operation behavior. Then this band b_i is set as used. Meanwhile, acting in an (AND) manner, GME/FSUT also greedily extends the band range to all of the other related bands (inside the black bold GME modular boxes) inside the current activated GME module Φ_k associated with the used bands for all classes ω_k, $k \in \{1, ..., N\}$. Go to step 2.

We sort these IGME feature modules $\Phi_{l\rho}$, where $l \in \{1, ..., n_I\}$, according to the number of their feature bands, i.e. the number of feature spaces in descending order. An example of the proposed GME/FSUT method is illustrated in Fig. 10. Each IGME feature module $\Phi_{l\rho}$ has a unique band set in side a box in gray.

After finding an IGME set, $\Phi_{l\rho}$, a feature selection procedure is next executed to select a subset of non-correlated bands using the unique class separability of the IGME. We use the intersection property of the IGME to select one of the most similar (correlated) bands in each IGME module $\Phi_{l\rho}$, $l \in \{1, ..., n_I\}$, for all class ω_k, $k \in \{1, ..., N\}$, arbitrarily to compose an identical IGME set Φ_{ρ}. Let us assume an identical IGME set Φ_{ρ} has n_{ρ} feature bands

$$b_{\rho} = (b_{1\rho}, ..., b_{n_{\rho}}).$$

where $b_{1\rho} \in \Phi_{1\rho}, ..., b_{l\rho} \in \Phi_{l\rho}, ..., b_{n_{\rho}} \in \Phi_{n_{\rho}}$, as shown in Fig. 8. IGME algorithm provides a quick feature
FIG. 9: GME sets for the three land cover types used in the experiment. The squares on the left are the original CMPM. The CMPM on the right are the reordered ones after a GMET. The GME feature modules \((\Phi^1, \ldots, \Phi^i, \ldots, \Phi^n)\) of different GME sets \(\Phi\) are illustrated as the modular boxes in the middle column.

selection procedure of the most significant features and an instant distance measure of the hyperspectral samples compared to the conventional feature extraction methods.
FIG. 10: An example of the proposed GME/FSUT method. The IGME modules Φ_i are obtained in the final column (inside the gray bold GME modular boxes).

Threshold Decomposition and Classification

The IGME can distinguish different classes well by the highly correlated feature characters of GME. It can make use of the *Euclidean distance* (ED) to extract the most significant bands selected from the IGME as a similarity measure from the proposed GME/FSUT-generated bands. Before finding the ED, a threshold decomposition is needed to normalize the scales of different feature bands selected by IGME. The threshold decompositions are performed to create normalized band scale values,

$$b_{IN} = (b_{1N}, ..., b_{lN}, ..., b_{nIN}).$$ \hspace{1cm} (6)

The b_{IN} is normalized to the range (0, 1) by the nonlinear *sigmoid function*:

$$\zeta = \frac{b_{IN} - \mu}{\sigma},$$ \hspace{1cm} (7)

and
where \(\mu, \sigma \) and \(t \) denote the mean and the standard deviation of the normalized band scale values \(b_{\omega} \) and a threshold value respectively. This new normalized scale values \(b_{\omega} \) are converted into binary values. We also define normalized binary values of ED,

\[
e_{\omega} = (e_{\omega, 1}, ..., e_{\omega, k}, ..., e_{\omega, N})
\]

(9)

for all classes \(\omega_k \), \(k \in \{1, ..., N\} \). The threshold decomposition function \(T(\cdot) \) then transforms the normalized scale values \(b_{\omega} \) into the binary values ED \(e_{\omega} \) for all classes \(\omega_k \).

After the normalization, the ED \(e_{\omega} \) is then decomposed for the purpose of distance measure. Note that only one band for each IGME feature module \(\Phi_{Il} \), \(l \in \{1, ..., n_I\} \), is selected to decompose the ED \(e_{\omega} \), as shown in Fig. 8. A normalized ED \(e_{\omega} \) function \(E(\cdot) \) of an identical IGME set with \(n_I \) feature bands is defined as:

\[
e_{\omega}(x) = \sqrt{\frac{1}{n_I} \sum_{i=1}^{n_I} \tilde{x}_i^2}
\]

(10)

where \(\tilde{x} = x - \bar{x} \) is the mean-normalized vector of sample \(x \). The sample \(x \) is equal to \(b_{\omega} \) for the training samples. Here, \(e_{\omega}(x) \) represents the distance between the query test samples \(X \) and the mean vector of training samples based on the IGME feature module \(\Phi_{Il} \). This distance decomposition is applied to all classes \(\omega_k \) to generate an identical normalized ED \(e_{\omega} \). After finding the normalized ED \(e_{\omega} \) from the previous stage, a minimum distance classification is next performed. By comparing the normalized ED \(e_{\omega} \) between training samples and test samples, it is easy to identify the correct classes to which the test samples belong. The training samples \(x \) are first applied to the GME/FSUT to construct the IGME feature module \(\Phi_{Il} \). The final determined classes are then induced by applying the test samples \(X \) to the GME/FSUT stage for feature extractions and minimum distance classifications.
FIG. 11: The map of the Au-Ku test site used in the experiment.

EXPERIMENTAL RESULTS

A plantation area in Au-Ku on the east coast of Taiwan as shown in Fig. 11 was chosen for investigation. The image data was obtained by the MASTER as part of the PacRim II project (Hook et al., 2000) [15]. A ground survey was made of the selected six land cover types at the same time. The proposed GME method was applied to 35 bands selected from the 50 contiguous bands (excluding the low signal-to-noise ratio mid-infrared channels) (Hook et al., 2000) [15] of MASTER. Six land cover classes, sugar cane A, sugar cane B, seawater, pond, bare soil and rice are used in the experiment. The criterion for calculating the classification accuracy of experiments was based on exhaustive test cases. One hundred and fifty labeled samples were randomly collected from ground survey datasets by iterating every fifth sample interval for each class. Thirty labeled samples were chosen as training samples, while the rest were used as test samples, i.e. the samples were partitioned into 30 (20%) training and 120 (80%) test samples for each test case. Three correlation coefficient threshold values, \(t_c = 0.75, 0.80 \) and 0.85, were selected to carry out GMET. Finally, the accuracy was obtained by averaging all of the multiple combinations stated above.

We compared several different configurations. Two main groups are compared in Fig. 12. The first group is for GME (the bolder lines in gray). In this case, the GME was applied to MASTER datasets to generate the IGME. One band was arbitrarily selected for each IGME feature module \(\Phi_l, l \in \{1, \ldots, n_\beta\} \), to decompose the normalized ED and apply to minimum distance classifier. For the second group, the same datasets were used as for the first group, thus they was used to make a comparison between the conventional Euclidean distance and our proposed GME methods. The Euclidean upper bound, Euclidean average bands and Euclidean lower bound represent respectively the best upper bound feature bands, the average bands (between upper bound and lower bound) and the worst
FIG. 12: Classification accuracy comparison of ED distance measure. Two groups are compared in different configurations.

lower bound feature bands obtained from original datasets. Euclidean PCA stands for the primary principal components of PCA from original datasets. The experimental results demonstrated that the proposed GME method is superior to the second group in general except Euclidean upper bound of three classes. Note that the Euclidean upper bound is chosen based on a prior knowledge of the MASTER instrument (Hook et al., 2000) [15]. It is hard to obtain the test dataset information without a prior knowledge of the instrument. Table I summarizes the evaluation of classification accuracy under different conditions to illustrate the validity of these unique properties of proposed GME feature extraction method. These encouraging results showed that satisfactory classification accuracy could be achieved with only a few computational time and small training samples.

CONCLUSIONS

This article presents a novel feature extraction GME technique for hyperspectral image classification, which consists of two algorithms, referred to as the GME and the FSUT. The GME method makes use of the GMET developed by grouping highly correlated bands into a small set of bands regardless of the original order of wavelengths to extract the most significant feature bands from
high-dimensional datasets, while the FSUT is performed to uniformity most correlated feature scales from different data sources. The proposed GME algorithm is efficient with little computational complexity. It uses intersection (AND) operations applied to the band numbers inside each GME module to unify the feature scales of GME and construct an identical IGME feature module set. It can be implemented as a band selector to generate a particular feature band set for each material class.

The experimental results demonstrated that the feature bands selected from the MASTER datasets by the GME algorithm contain discriminatory properties crucial to subsequent classification.

TABLE I: Summary evaluation of classification accuracy for different feature extraction methods and number of classes.

<table>
<thead>
<tr>
<th>Feature extraction methods</th>
<th>Number of classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Group one:</td>
<td></td>
</tr>
<tr>
<td>GME</td>
<td>85.97%</td>
</tr>
<tr>
<td>Group two:</td>
<td></td>
</tr>
<tr>
<td>Euclidean upper bound</td>
<td>86.25%</td>
</tr>
<tr>
<td>Euclidean average bound</td>
<td>69.55%</td>
</tr>
<tr>
<td>Euclidean lower bound</td>
<td>52.85%</td>
</tr>
<tr>
<td>Euclidean PCA</td>
<td>59.00%</td>
</tr>
</tbody>
</table>

Moreover, compared to conventional feature extraction techniques, the IGME feature modules have very good abilities to adapt to the minimum distance classifiers. They make use of the potential significant separability of GME to select a unique set of most important feature bands in high-dimensional datasets. The proposed GME/FSUT algorithm provides a fast way to find the most significant feature bands and to speed up the distance decomposition compared to GME features.

ACKNOWLEDGMENTS

This work was supported by the National Science Council, Taiwan, under Grant No. NSC 94-2212-E027-024.
REFERENCES

