Partitioning Methods

Outline

- Introduction to Hardware-Software Codesign
- Models, Architectures, Languages
- Partitioning Methods
- Design Quality Estimation
- Specification Refinement
- Co-synthesis Techniques
- Function-Architecture Codesign Paradigm
- Codesign Case Studies
 - ATM Virtual Private Network
 - Digital Camera with JPEG
System Partitioning

- System functionality is implemented on system components
 - ASICs, processors, memories, buses

- Two design tasks:
 - Allocate system components or ASIC constraints
 - Partition functionality among components

- Constraints
 - Cost, performance, size, power

- Partitioning is a central system design task

Hardware/Software Partitioning

- Informal Definition
 - The process of deciding, for each subsystem, whether the required functionality is more advantageously implemented in hardware or software

- Goal
 - To achieve a partition that will give us the required performance within the overall system requirements (in size, weight, power, cost, etc.)

- This is a multivariate optimization problem that when automated, is an NP-hard problem
HW/SW Partitioning

Formal Definition

- A hardware/software partition is defined using two sets H and S, where $H \subseteq O$, $S \subseteq O$, $H \cup S = O$, $H \cap S = \emptyset$.

- Associated metrics:
 - $\text{Hsize}(H)$ is the size of the hardware needed to implement the functions in H (e.g., number of transistors).
 - $\text{Performance}(G)$ is the total execution time for the group of functions in G for a given partition $\{H,S\}$.
 - A set of performance constraints, $\text{Cons} = (C_1, \ldots, C_m)$, where $C_j = (G, \text{timecon})$, indicates the maximum execution time allowed for all the functions in group G and $G \subseteq O$.

Performance Satisfying Partition

- A performance satisfying partition is one for which $\text{performance}(C_j,G) \leq C_j.\text{timecon}$, for all $j=1\ldots m$.

- Given O and Cons, the hardware/software partitioning problem is to find a performance satisfying partition $\{H,S\}$ such that $\text{Hsize}(H)$ is minimized.

- The all-hardware size of O is defined as the size of an all hardware partition (i.e., $\text{Hsize}(O)$).
HW/SW Partitioning Issues

- Partitioning into hardware and software affects overall system cost and performance

- Hardware implementation
 - Provides higher performance via hardware speeds and parallel execution of operations
 - Incurs additional expense of fabricating ASICs

- Software implementation
 - May run on high-performance processors at low cost (due to high-volume production)
 - Incurs high cost of developing and maintaining (complex) software

Structural vs. Functional Partitioning

- Structural: Implement structure, then partition
 - Good for the hardware (size & pin) estimation.
 - Size/performance tradeoffs are difficult.
 - Suffer for large possible number of objects.
 - Difficult for HW/SW tradeoff.

- Functional: Partition function, then implement
 - Enables better size/performance tradeoffs
 - Uses fewer objects, better for algorithms/humans
 - Permits hardware/software solutions
 - But, it’s harder than graph partitioning
Partitioning Approaches

- Start with all functionality in software and move portions into hardware which are time-critical and can not be allocated to software (software-oriented partitioning)

- Start with all functionality in hardware and move portions into software implementation (hardware-oriented partitioning)

System Partitioning
(Functional Partitioning)

- System partitioning in the context of hardware/software codesign is also referred to as functional partitioning
- Partitioning functional objects among system components is done as follows
 - The system’s functionality is described as collection of indivisible functional objects
 - Each system component’s functionality is implemented in either hardware or software
- An important advantage of functional partitioning is that it allows hardware/software solutions
Binding Software to Hardware

- Binding: assigning software to hardware components
- After parallel implementation of assigned modules, all design threads are joined for system integration
 - Early binding commits a design process to a certain course
 - Late binding, on the other hand, provides greater flexibility for last minute changes

Hardware/Software System Architecture Trends

- Some operations in special-purpose hardware
 - Generally take the form of a coprocessor communicating with the CPU over its bus
 - Computation must be long enough to compensate for the communication overhead
 - May be implemented totally in hardware to avoid instruction interpretation overhead
 - Utilize high-level synthesis algorithms to generate a register transfer implementation from a behavior description
- Partitioning algorithms are closely related to the process scheduling model used for the software side of the implementation
Basic Partitioning Issues

- Specification-abstraction level: input definition
 - Executable languages becoming a requirement
 • Although natural languages common in practice.
 - Just indicating the language is insufficient
 - Abstraction-level indicates amount of design already done
 • e.g. task DFG, tasks, CDFG, FSMD

- Granularity: specification size in each object
 - Fine granularity yields more possible designs
 - Coarse granularity better for computation, designer interaction
 • e.g. tasks, procedures, statement blocks, statements

- Component allocation: types and numbers
 - e.g. ASICs, processors, memories, buses

Basic Partitioning Issues (cont.)

- Metrics and estimations: "good" partition attributes
 - e.g. cost, speed, power, size, pins, testability, reliability
 - Estimates derived from quick, rough implementation
 - Speed and accuracy are competing goals of estimation

- Objective and closeness functions
 - Combines multiple metric values
 - Closeness used for grouping before complete partition
 - Weighted sum common
 - e.g. k1F(area,c)+k2F(delay,c)+k3F(power,c)

- Output: format and uses
 - e.g. new specification, hints to synthesis tool

- Flow of control and designer interaction
Issues in Partitioning (Cont.)

- High Level Abstraction
- Decomposition of functional objects
 - Metrics and estimations
 - Partitioning algorithms
 - Objective and closeness functions
- Component allocation
- Output

Specification Abstraction Levels

- Task-level dataflow graph
 - A Dataflow graph where each operation represents a task
- Task
 - Each task is described as a sequential program
- Arithmetic-level dataflow graph
 - A Dataflow graph of arithmetic operations along with some control operations
 - The most common model used in the partitioning techniques
- Finite state machine (FSM) with datapath
 - A finite state machine, with possibly complex expressions being computed in a state or during a transition
Specification Abstraction Levels (Cont.)

- **Register transfers**
 - The transfers between registers for each machine state are described

- **Structure**
 - A structural interconnection of physical components
 - Often called a net-list

Granularity Issues in Partitioning

- The granularity of the decomposition is a measure of the size of the specification in each object
- The specification is first decomposed into functional objects, which are then partitioned among system components
 - Coarse granularity means that each object contains a large amount of the specification.
 - Fine granularity means that each object contains only a small amount of the specification
 - Many more objects
 - More possible partitions
 - Better optimizations can be achieved
System Component Allocation

- The process of choosing system component types from among those allowed, and selecting a number of each to use in a given design
- The set of selected components is called an allocation
 - Various allocations can be used to implement a specification, each differing primarily in monetary cost and performance
 - Allocation is typically done manually or in conjunction with a partitioning algorithm
- A partitioning technique must designate the types of system components to which functional objects can be mapped
 - ASICs, memories, etc.

Metrics and Estimations Issues

- A technique must define the attributes of a partition that determine its quality
 - Such attributes are called metrics
 - Examples include monetary cost, execution time, communication bit-rates, power consumption, area, pins, testability, reliability, program size, data size, and memory size
 - Closeness metrics are used to predict the benefit of grouping any two objects
- Need to compute a metric’s value
 - Because all metrics are defined in terms of the structure (or software) that implements the functional objects, it is difficult to compute costs as no such implementation exists during partitioning
Metrics in HW/SW Partitioning

- Two key metrics are used in hardware/software partitioning
 - Performance: Generally improved by moving objects to hardware
 - Hardware size: Hardware size is generally improved by moving objects out of hardware

Computation of Metrics

- Two approaches to computing metrics
 - Creating a detailed implementation
 - Produces accurate metric values
 - Impractical as it requires too much time
 - Creating a rough implementation
 - Includes the major register transfer components of a design
 - Skips details such as precise routing or optimized logic, which require much design time
 - Determining metric values from a rough implementation is called estimation
Estimation of Partitioning Metrics

- Deterministic estimation techniques
 - Can be used only with a fully specified model with all data dependencies removed and all component costs known
 - Result in very good partitions
- Statistical estimation techniques
 - Used when the model is not fully specified
 - Based on the analysis of similar systems and certain design parameters
- Profiling techniques
 - Examine control flow and data flow within an architecture to determine computationally expensive parts which are better realized in hardware

Objective and Closeness Functions

- Multiple metrics, such as cost, power, and performance are weighed against one another
 - An expression combining multiple metric values into a single value that defines the quality of a partition is called an Objective Function
 - The value returned by such a function is called cost
 - Because many metrics may be of varying importance, a weighted sum objective function is used
 - e.g., Objfct = k1 * area + k2 * delay + k3 * power
 - Because constraints always exist on each design, they must be taken into account
 - e.g, Objfct = k1 * F(area, area_constr) + k2 * F(delay, delay_constr) + k3 * F(power, power_constr)
Partitioning Algorithm Issues

- Given a set of functional objects and a set of system components, a partitioning algorithm searches for the best partition, which is the one with the lowest cost, as computed by an objective function.
- While the best partition can be found through exhaustive search, this method is impractical because of the inordinate amount of computation and time required.
- The essence of a partitioning algorithm is the manner in which it chooses the subset of all possible partitions to examine.

Partitioning Algorithm Classes

- **Constructive algorithms**
 - Group objects into a complete partition
 - Use closeness metrics to group objects, hoping for a good partition
 - Spend computation time constructing a small number of partitions

- **Iterative algorithms**
 - Modify a complete partition in the hope that such modifications will improve the partition
 - Use an objective function to evaluate each partition
 - Yield more accurate evaluations than closeness functions used by constructive algorithms

- In practice, a combination of constructive and iterative algorithms is often employed.
Iterative Partitioning Algorithms

- The computation time in an iterative algorithm is spent evaluating large numbers of partitions.
- Iterative algorithms differ from one another primarily in the ways in which they modify the partition and in which they accept or reject bad modifications.
- The goal is to find global minimum while performing as little computation as possible.

![Graph showing A, B - Local minima, C - Global minimum]

Iterative Partitioning Algorithms (Cont.)

- Greedy algorithms
 - Only accept moves that decrease cost
 - Can get trapped in local minima

- Hill-climbing algorithms
 - Allow moves in directions increasing cost (retracing)
 - Through use of stochastic functions
 - Can escape local minima
 - E.g., simulated annealing
Typical partitioning-system configuration

![Diagram](image)

Basic partitioning algorithms

- Random mapping
 - Only used for the creation of the initial partition.
- Clustering and multi-stage clustering
- Group migration (a.k.a. min-cut or Kernighan/Lin)
- Ratio cut
- Simulated annealing
- Genetic evolution
- Integer linear programming
Hierarchical clustering

- One of constructive algorithm based on closeness metrics to group objects

- Fundamental steps:
 - Groups closest objects
 - Recompute closenesses
 - Repeat until termination condition met

- Cluster tree maintains history of merges
 - Cutline across the tree defines a partition

Hierarchical clustering algorithm

/* Initialize each object as a group */
for each oi loop
 pi=oi
 P=P∪pi
end loop

/* Compute closenesses between objects */
for each pi loop
 for each pj loop
 ci,j=ComputeCloseness(pi,pj)
 end loop
end loop

/* Merge closest objects and recompute closenesses */
While not Terminate(P) loop
 pi,pj=FindClosestObjects(P,C)
 P=P∪pi−pj∪upj
 for each pk loop
 ci,j,k=ComputeCloseness(pij,pk)
 end loop
end loop
return P
Hierarchical clustering example

Greedy partitioning for HW/SW partition

- Two-way partition algorithm between the groups of HW and SW.
- Suffer from local minimum problem.

Repeat
 \[P_{\text{orig}} = P \]
 for \(i \) in 1 to \(n \) loop
 if \(\text{Objfct}(\text{Move}(P,o)) < \text{Objfct}(P) \) then
 \(P = \text{Move}(P,o) \)
 end if
 end loop
Until \(P = P_{\text{orig}} \)
Multi-stage clustering

- Start hierarchical clustering with one metric and then continue with another metric.
- Each clustering with a particular metric is called a stage.

Group migration

- Another iteration improvement algorithm extended from two-way partitioning algorithm that suffer from local minimum problem.
- The movement of objects between groups depends on if it produces the greatest decrease or the smallest increase in cost.
 - To prevent an infinite loop in the algorithm, each object can only be moved once.
Group migration’s Algorithm

\[P = P_{\text{in}} \]

Loop

/*Initialize*/

prev_P = P

prev_cost = Objfct(P)

bestpart_cost = ∞

for each object loop

\(o_{i} \cdot \text{moved} = \text{false} \)

end loop

/*create a sequence of n moves*/

for \(i \) in 1 to \(n \) loop

bestmove_cost = ∞

for each object not \(o_{i} \cdot \text{moved} \) loop

\(\text{cost} = \text{Objfct}(\text{Move}(P, o_{i})) \)

if \(\text{cost} < \text{bestmove_cost} \) then

bestmove_cost = \(\text{cost} \)

bestmove_obj = \(o_{i} \)

end if

end loop

\(P = \text{Move}(P, \text{bestmove_obj}) \)

bestmove_obj.moved = true

/*Save the best partition during the sequence*/

if \(\text{bestmove_cost} < \text{bestpart_cost} \) then

bestpart_P = P

bestpart_cost = bestmove_cost

end if

end loop

/*Update P if a better cost was found, else exit*/

If \(\text{bestpart_cost} < \text{prev_cost} \) then

\(P = \text{bestpart_P} \)

else return prev_P

end if

end loop

Ratio Cut

- A constructive algorithm that groups objects until a terminal condition has been met.
- A new metric **ratio** is defined as

\[
\text{ratio} = \frac{\text{cut}(P)}{\text{size}(p_{i}) \times \text{size}(p_{j})}
\]

- Cut(P): sum of the weights of the edges that cross \(p_{1} \) and \(p_{2} \).
- Size(\(p_{i} \)): size of \(p_{i} \).
- The ratio metric balances the competing goals of grouping objects to reduce the cutsize without grouping distance objects.
- Based on this new metric, the partition algorithms try to group objects to reduce the cutsizes without grouping objects that are not close.
Simulated annealing

- Iterative algorithm modeled after physical annealing process that to avoid local minimum problem.
- Overview
 - Starts with initial partition and temperature
 - Slowly decreases temperature
 - For each temperature, generates random moves
 - Accepts any move that improves cost
 - Accepts some bad moves, less likely at low temperatures
- Results and complexity depend on temperature decrease rate

Simulated annealing algorithm

```
Temp=initial temperature
Cost=Objfct(P)
While not Frozen loop
  while not Equilibrium loop
    P_tentative=Move(P)
    cost_tentative=Objfct(P_tentative)
    cost=cost_tentative-cost
    if(Accept(cost,temp)>Random(0,1)) then
      P=P_tentative
      cost=cost_tentative
    end if
  end loop
  temp=DecreaseTemp(temp)
End loop
where: Accept(cost,temp)=min(1,e^{\frac{cost}{temp}})
```
Genetic evolution

- Genetic algorithms treat a set of partitions as a generation, and create a new generation from a current one by imitating three evolution methods found in nature.
- Three evolution methods
 - Selection: random selected partition.
 - Crossover: randomly selected from two strong partitions.
 - Mutation: randomly selected partition after some randomly modification.
- Produce good result but suffer from long run times.

Genetic evolution’s algorithm

/*Create first generation with gen_size random partitions*/
G=∅
for i in 1 to gen_size loop
 G=GUCreateRandomPart(O)
end loop
P_best=BestPart(G)

/*Evolve generation*/
While not Terminate loop
 G=Select*G,num_sel) U Cross(G,num_cross)
 Mutate(G,num_mutatae)
 If Objfct(BestPart(G))<Objfct(P_best)then
 P_best=BestPart(G)
 end if
end loop

/*Return best partition in final generation*/
return P_best
Integer Linear Programming

- A linear program formulation consists of a set of variables, a set of linear inequalities, and a single linear function of the variables that serves as an objective function.
 - A integer linear program is a linear program in which the variables can only hold integers.
- For partition purpose, the variables are used to represent partitioning decision or metric estimations.
- Still a NP-hard problem that requires some heuristics.

Partition example

- The Yorktown Silicon compiler uses a hierarchical clustering algorithm with the following closeness as the terminal conditions:

\[
\text{Closeness}(p_i, p_j) = \left(\frac{\text{Conn}_{i,j}}{\text{MaxConn}(P)} \right)^{k_2} \cdot \left(\frac{\text{size}_{\text{max}}}{\text{Min}(\text{size}_i, \text{size}_j)} \right)^{k_3} \cdot \left(\frac{\text{size}_{\text{max}}}{\text{size}_i + \text{size}_j} \right)
\]

- \(\text{Conn}_{i,j}\): \(\text{k1} \cdot \text{inputs}_{i,j} + \text{wire}_{i,j}\)
- \(\text{inputs}_{i,j}\): # of common inputs shared
- \(\text{wires}_{i,j}\): # of op to ip and ip to op
- \(\text{MaxConn}(P)\): maximum Conn over all pairs
- \(\text{size}_i\): estimated size of group \(p_i\)
- \(\text{size}_{\text{max}}\): maximum group size allowed
- \(k1, k2, k3\): constants
Ysc partitioning example

YSC partitioning example:

(a) input
(b) operation
(c) operation closeness values
(d) Clusters formed with 0.5 threshold

Closeness(\(+, =\)) = \(\frac{8+0}{8} \times \frac{300}{120} \times \frac{300}{120 + 140} = 2.9\)

Closeness(\(-, <\)) = \(\frac{0+4}{8} \times \frac{300}{160} \times \frac{300}{160 + 180} = 0.8\)

All other operation pairs have a closeness value of 0. The closeness values between all operations are shown in figure 6.6(c).

Figure 6.6(d) shows the results of hierarchical clustering with a closeness threshold of 0.5; the + and = operations form one cluster, and the < and – operations from a second cluster.

Ysc partitioning with similarities

Ysc partitioning with similarities:

(a) clusters formed with 3.0 closeness threshold
(b) operation similarity table
(c) closeness values
With similarities (d) clusters formed.
Output Issues in Partitioning

- Any partitioning technique must define the representation format and potential use of its output
 - E.g., the format may be a list indicating which functional object is mapped to which system component
 - E.g., the output may be a revised specification
 - Containing structural objects for the system components
 - Defining a component’s functionality using the functional objects mapped to it

Flow of Control and Designer Interaction

- Sequence in making decisions is variable, and any partitioning technique must specify the appropriate sequences
 - E.g., selection of granularity, closeness metrics, closeness functions
- Two classes of interaction
 - Directives
 - Include possible actions the designer can perform manually, such as allocation, overriding estimations, etc.
 - Feedback
 - Describe the current design information available to the designer (e.g., graphs of wires between objects, histograms, etc.)
Comparing Partitions Using Cost Functions

- A cost function is a function Cost(H, S, Cons, I) which returns a natural number that summarizes the overall quality of a given partition
 - I contains any additional information that is not contained in H or S or Cons
 - A smaller cost function value is desired
- An iterative improvement partitioning algorithm is defined as a procedure
 Part_Alg(H, S, Cons, I, Cost())
 which returns a partition H', S' such that
 Cost(H', S', Cons, I) ≤ Cost(H, S, Cons, I)