Instructor: 楊士萱 (Prof. Shih-Hsuan Yang)
Office: 科研大樓 1525
Phone: (02) 27712171 ext. 4211
Email: shyang@ntut.edu.tw
Web: http://www.ntut.edu.tw/~shyang
Instructor’s Office Hours: 9:10–10:00 on Mondays or by appointment.

TA: 甘家澤
Office: 科研大樓 1323
Phone: 27712171 ext. 4264
Email: alphamtv@gmail.com
TA’s Office Hours: 11:00–12:00 on Mondays and 18:00–19:00 on Tuesdays

Textbook:

Good References:
1. Elementary Linear Algebra by Howard Anton, John Wiley & Sons, Inc.

Grading Policy:
1. Attendance and in-class recitations, 8% (extra).
2. Written homeworks, 15%. Hand in your homework every Wednesday right before class. Please do not plagiarize others’ work.
3. Four Matlab homeworks, 5%. The problems will be posted on my Web.
4. Two 50-minute quizzes, 15% each.
5. Midterm exam and final exam, 25% each.

This course Linear Algebra
• is a mathematics course.
• is useful and fundamental to EECS (and many other discipline) students.
• emphasizes both computations and concepts.
• asks you to use a popular matrix-based mathematical package called Matlab. （請使用計網中心電腦教室）
• guides you to read through an English textbook.
• requires hard work.
Syllabus: (The number in parentheses indicates the estimated teaching hours.)

(12) 1. Linear Equations

- To understand the basic terminologies and notations of matrices and systems of linear equations, in the forms of vector equation and matrix equation.
- Solving a system of linear equations with the Gaussian elimination: reducing a matrix to its echelon form.
- To interpret a system of linear equations in various ways.
- First exposure to key concepts such as linear independence and linear transformation. (Quiz #1)

(8) 2. Matrix Algebra

- To learn basic matrix arithmetic operations: addition, subtraction, multiplication power, transpose, and inverse.
- To summarize the concepts for systems of n linear equations in n unknowns. (Midterm exam)

(12) 3. Vector Spaces

- Introduction to vector spaces.
- Fundamental subspaces of a matrix: column space, row space, and null space.
- Basis and dimension of a vector space. (Quiz #2)

(8) 4. Eigenvalues and Eigenvectors

- To find the eigenvalues and eigenvectors of a matrix.
- Diagonalization of a matrix (linear transformation).
- To view eigenbases in the context of simplifying (decorrelating) linear transformations.

(8) 5. Orthogonality and Inner-Product Spaces

- To introduce inner product of vectors, and thus the geometric concepts of length, distance, and angle (perpendicularity).
- To be familiar with the use of orthogonal bases.
- Least-Squares approximation. (Final exam)