Molecular Dynamics Simulations To Determine the Effect of Supercritical Carbon Dioxide on the Structural Integrity of Hen Egg White Lysozyme

Hsuan-Liang Liu,*,† Wei-Chan Hsieh‡ and Hwai-Shen Liu‡

Department of Chemical Engineering and Graduate Institute of Biotechnology, National Taipei University of Technology, No. 1 Sec. 3 Chung-Hsiao E. Rd., Taipei 10643, Taiwan, and Department of Chemical Engineering, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd., Taipei 106, Taiwan

In this study, various molecular dynamics simulations were conducted to investigate the effect of supercritical carbon dioxide on the structural integrity of hen egg white lysozyme. The analyses of backbone root-mean-square deviation, radius of gyration, and secondary structure stability all show that supercritical CO₂ exhibits the ability to increase the stability of this protein, probably as a result of the solvent with less polarity, where hydrophobic interactions stabilizing the native structure are weakened and simultaneously the local hydrogen bonds are strengthened, resulting in stabilization of the secondary structures. The hydrophobic cores in the α- and β-domains also play an important role in preventing this protein from thermal unfolding. As supercritical CO₂ has been attractive for biomedical applications because of the advantages of mild critical condition, nonflammability, nontoxicity, and the purity of the resulting products, the structural stabilizing effect found in this study strongly suggests that it is possible to increase the thermostability of hen egg white lysozyme by pretreatment with supercritical CO₂, leading to better industrial applications of this protein.

Introduction

Fluids in the approximate temperature and pressure ranges $T \geq T_c$ and $P \geq P_c$ (where c denotes the critical point) are known as supercritical fluids. They are highly compressible, and thus their solvent characteristics can be adjusted continuously from gaslike to liquidlike state with small change in pressure (1, 2). Supercritical fluids exhibit both liquidlike solvent properties and gaslike transport characteristics, which makes them useful for reactions and separations (1, 2). Carbon dioxide has been widely used as a solvent in supercritical fluid extraction (SFE) processes and has been attractive for biomedical applications (3) because of the advantages of mild critical condition (e.g., $T_c = 31.1 \, ^\circ C$ and $P_c = 73.8 \, $bar), nonflammability, nontoxicity, and the purity of the resulting products.

Previous works by Yeo et al. (4, 5) have used a novel supercritical fluid antisolvent technique (SAS) to form insulin particles, and the subsequent secondary structure analysis by Raman spectroscopy revealed substantial loss of α-helicity and marked increase in β-sheet and β-reverse turn content. The magnitude of structural distortion was found to be comparable to that of irreversibly denatured fibrils obtained by heating an aqueous insulin solution at 100 °C for 30 min. Interestingly, despite the major conformational changes induced during SAS process, the insulin precipitates recovered their full biological activity and native structure toward redissolution in aqueous solution (5). The SAS technique exposes proteins to organic and supercritical nonaqueous solvent, high pressure, and shearing forces. Any of these factors may potentially induce conformational changes of proteins. Winters et al. (6) have successfully shown that the applications of SAS technique to other proteins such as lysozyme and trypsin in supercritical CO₂ (SCCO₂) exhibit behavior similar to that of insulin, that is, the biological activity can be totally recovered after redissolution in water. However, the structural perturbations induced during the SAS process were found to be protein-specific.

Hen egg white lysozyme (HEWL), constituting 3–4% of the total hen protein content (7), was the third protein and the first enzyme to be determined by X-ray crystallography (8–10). It is composed of two domains (i.e., α- and β-domains) with the active site cleft situated between them (Figure 1). The large α-domain, composed of residues 1–39 and 89–129, has four α-helices (α1–α4) and a C-terminal 310 helix, whereas the primary component of the smaller β-domain, composed of residues 40–88, is a three-stranded antiparallel β-sheet (β1–β3), followed by a 310 helix and an irregular loop containing two disulfide bridges. The folding pathway of HEWL has been extensively studied (11). Early refolding experiments of HEWL suggested that the acquisition of secondary structure preceded the formation of tertiary structure (12–14). The formation of secondary structure has been further confirmed by stop-flow CD studies (15, 16). These experimental results show that HEWL undergoes multiple folding pathways, that on the dominant folding pathway the α-domain becomes substantially folded prior to the β-domain and that a significant minority of...
molecules follow a much faster route on which the domains fold at similar rates (11, 16, 17). In addition, various molecular modeling protocols have also been conducted on HEWL and its complex with hexasaccharide to investigate the dynamics behaviors of this protein (18–21), including one of the pioneering applications of the temperature jump technique (22).

Several protein structures from extremophiles have provided clues as to how proteins can adapt to extreme temperatures or high salt and therefore helped unravel details of the physical constraints governing the structure and evolution of proteins (23–25). Temperature usually causes simultaneous changes in volume and thermal energy of a protein, whereas pressure causes changes only in volume (26). Therefore, pressure effects are of interest because protein compressibility is directly related to the structural and conformational fluctuations of proteins at normal atmospheric pressure (27, 28). To investigate the characteristics of HEWL under extreme conditions, denaturation of HEWL at high pressure has been studied by high resolution \(^{1}H\) NMR spectroscopy (29, 30). In addition to sperm whale myoglobin (31), the crystal structure of HEWL at a hydrostatic pressure of 1,000 atm has been determined by X-ray diffraction to a nominal resolution of 2 Å, indicating that the contraction of this enzyme was nonuniformly distributed under high pressure (32). Recently, pressure-dependent changes in the solution structure of HEWL has been investigated, showing that the α-domain is compressed by approximately 1% and the interdomain region is also compressed, whereas the β-domain displays very little overall compression (33).

In addition to the pressure effect on the structural changes of proteins, solvents also play an important role in determining the conformation of proteins. In general, secondary structures stabilized in solvents with low polarity are considered to be the initiation site of protein folding (34, 35). For example, addition of alcohols successfully converts melittin from unfolded state into a monomeric α-helical structure (36, 37). The effects of alcohols can be attributed to some extent by the decreased polarity of the solvent (38–40). In solvents of low polarity, hydrophobic interactions stabilizing the native structure or the protein aggregate are weakened, and simultaneously the local hydrogen bonds are strengthened, resulting in denaturation or dissolution and stabilization of the extended α-helical structures.

Usually, high temperature, mechanical stresses, and pressure are the main causes enhancing enzyme inactivation in industrial systems. However, HEWL has been shown to exhibit higher thermal stability by pretreatment with sCO\(_2\) for 1 h (unpublished data). The effect of the sCO\(_2\) on enhancing the thermal stability of HEWL is likely to be attributed to either the pressure effect or the solvent characteristics of this fluid. Molecular dynamics (MD) simulations have provided a powerful tool to understand the dynamics of a protein at atomic detail, which can lead to significant insights into the atomic motions and the machinery underlying the protein function (41–43). Previously, we have successfully conducted several MD simulations to investigate the conformational changes of various proteins under different conditions (44–49). To investigate the effect of sCO\(_2\) on the structural integrity of HEWL, two sets of experiments were performed in this study: (1) HEWL was placed in a lattice full of sCO\(_2\) followed by energy minimization calculations and 200 ps MD simulations at its critical condition (i.e., 305 K and 73.8 bar). The resulting structure at 200 ps was then subjected to a lattice full of water molecules, followed by additional 200 ps MD simulations at 1 atm and 310, 450, and 600 K. (2) HEWL was placed in a lattice full of water molecules, followed by energy minimization calculations and 400 ps MD simulations at 1 atm and 310, 450, and 600 K for comparison.

Materials and Methods

The initial X-ray crystallographic structure of HEWL (EC 3.2.1.17) solved at 1.6 Å (Figure 1) was taken from the Protein Data Bank (PDB entry 1LKS) (50). The energy minimizations and MD simulations of HEWL were conducted by Insight II program (Accelrys, San Diego, CA) with the force field Discover CVFF (consistent valence force field) (51–53) in the SGI O2000 workstation with 64-bit HIPS RISC R12000 2 × 270 MHz CPU and PMC-Sierra RM7000A 350 MHz processor (Silicon Graphics, Inc., Mountain View, CA). The force field parameters in CVFF were developed by computing the properties of nearly 2000 different macromolecules such as proteins, nucleic acids, carbohydrates, and lipids, resulting in over 2,000,000 quantum mechanically computed energies and energy derivatives. The X-ray crystallographic structure of HEWL (129 residues and 1,951 atoms in total) was subjected to energy minimization calculations by conjugate gradient method with 10,000 iterations to be used as starting lowest energy structure for future structure comparison.

The energy-minimized HEWL was placed in the center of two pseudo unit cells of the size 55 × 55 × 55 Å\(^3\) and soaked with water and carbon dioxide molecules into the unit cell, respectively. To arrange the soaked solvent randomly, solvent molecular were submitted to 10,000 iterations by conjugate gradient method, keeping the atoms of HEWL fixed during the solvent randomization step. The range of cutoff radius was set as 10 Å for both nonbonded electrostatic and van der Waals interactions. The minimum image (molecule migrates out of the solvent box will not be re-imaged at the end of MD simulation and minimization) periodic boundary conditions (PBC) were used to keep constant volume during

Figure 1. X-ray crystallographic structure of HEWL (50) visualized by Insight II program. The N- and C-termini are indicated. α-Helices 1–4 (α1–α4) shown as red cylinders are numbered in sequential order from the N- to the C-terminus. β-Strands 1–3 (β1–β3) are shown as yellow arrows pointing from the N- to the C-terminus. The locations of α-domain (composed of residues 1–39 and 89–129), β-domain (composed of residues 40–88), and the catalytic cleft between these two domains are indicated. The polypeptide backbones belonging to the turn and random coil regions are shown in blue and green, respectively. The eight Cys residues forming the four disulfide linkages are labeled.
the MD courses and decrease the total CPU time of MD simulation.

The energy-minimized HEWL/sCO2 system was then submitted to 200 ps MD simulations at its critical condition (i.e., 305 K and 73.8 bar) after equilibrating for about 10 ps using the Discover module of the Insight II program. The resulting structure at 200 ps was then subjected to a lattice full of water molecules, followed by additional 200 ps MD simulations at 1 atm and 310, 450, and 600 K. For comparison, the energy-minimized HEWL/water system was submitted to 400 ps MD simulations at 1 atm and 310, 450, and 600 K. The temperature and pressure were maintained constant for each MD simulation and subsequently submitted to another 200 ps MD simulations in water at various temperatures. These results indicate that sCO2 exhibits the ability to reduce the structural variations at high temperatures, which in turn implies that the thermostability of HEWL could be enhanced when it is pretreated with sCO2.

Most of the high-pressure computer simulations reported so far have been of the MD type (58). The first high-pressure MD simulations on BPT1 were reported by Kitchen et al. (59). No changes in the conformation were detected at 10 kbar; only the increased hydration of certain amino acids was observed. Subsequent MD simulations revealed that changes in the secondary structures between 10 and 15 kbar were observed (60). These changes could be correlated with changes in the secondary structure observed with high-pressure infrared studies (61). Furthermore, no net unfolding of lysozyme was observed at 10 kbar after 210 ps (20). However, fluorescence (62) as well as Raman (63) studies indicate that the protein unfolds at about 5 kbar. According to the above observations, one may ask the question whether the pressure—temperature behavior of protein is unique among various biomacromolecules. Previously, Ezaki and Hayashi (64) have shown that starch also forms a gel by the application of pressure. This suggests that proteins and starch show a similar behavior with regard to temperature and pressure, which raises the question on the presumed role of hydrophobic interactions in the stability of protein (58).
Previously, radius of gyration has been chosen to investigate the effect of pressure on protein compressibility (58, 65), where protein is compressed when the radius of gyration decreases (20). As shown in Figure 5, the values of radius of gyration of the entire HEWL or of various structural elements were all more stable when the HEWL was pretreated with sCO₂, particularly in the hydrophobic core of the α-domain, which is formed by α-helices 1, 2, and 3 (Figure 3). It indicates that this structural element is resistant to compressibility induced by high pressure. This result is consistent with the previous findings that the main effect of the pressure is a compaction of the hydrophobic core part of the protein consisting of a bulky side-chains (30), the α-domain is compressed as a result of tighter packing between helices, and the β-domain displays very little overall compression but undergoes more structural distortion against high pressure (33). Previous X-ray diffraction study of lysozyme crystals at a hydrostatic pressure of 1 kbar (32) has shown a differential compressibility between the two
domains, the β-domain being essentially incompressible while the α-domain and the interdomain catalytic cleft contracted under pressure. The present results show that sCO$_2$ can protect HEWL from pressure denaturation, probably because of its less polar solvent properties, which is in good agreement with the previous statements that buried water molecules play an important role in conformational fluctuation at normal pressures and are implicated as the nucleation sites for structural changes leading to pressure denaturation or channel opening (33).

Temperature jump technique has been intensively applied to investigate the unfolding mechanism of various proteins (44–46, 66, 67). Applied to lysozyme, this unfolding method resulted in an almost complete loss of secondary structure and the splitting of the hydrophobic core into four main clusters (20). The overall shape of the protein, however, remained relatively compact. The folding model supported by lysozyme MD simulation is a hydrophobic collapse prior to or concomitant with secondary and tertiary structure formation (68). To investigate the stability of the secondary structures (i.e.,

Figure 5. Radius of gyration of (A) the entire HEWL, (B) the α-domain, (C) the β-domain, (D) the catalytic cleft, and (E) the hydrophobic core in the α-domain. Abbreviations are the same as in Figure 4.
Table 1. Average Secondary Structure Content of Each α-Helix and β-Strand during Various MD Simulations Conducted in This Study

<table>
<thead>
<tr>
<th>secondary structure</th>
<th>residues</th>
<th>w310°</th>
<th>w450°</th>
<th>w600°</th>
<th>sCO2</th>
<th>sCO2_w310°</th>
<th>sCO2_w450°</th>
<th>sCO2_w600°</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-helix 1</td>
<td>5–15</td>
<td>90.6</td>
<td>81.9</td>
<td>0.5</td>
<td>82.2</td>
<td>85.2</td>
<td>75.1</td>
<td>75.4</td>
</tr>
<tr>
<td>α-helix 2</td>
<td>25–36</td>
<td>85.1</td>
<td>78.5</td>
<td>35.2</td>
<td>94.1</td>
<td>87.5</td>
<td>80.5</td>
<td>63.5</td>
</tr>
<tr>
<td>α-helix 3</td>
<td>89–100</td>
<td>91.5</td>
<td>92.8</td>
<td>26.9</td>
<td>69.2</td>
<td>87.8</td>
<td>84.1</td>
<td>78.8</td>
</tr>
<tr>
<td>α-helix 4</td>
<td>109–112</td>
<td>90.2</td>
<td>7.0</td>
<td>10.5</td>
<td>34.5</td>
<td>7.1</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>β-strand 1</td>
<td>43–45</td>
<td>94.3</td>
<td>65.3</td>
<td>38.1</td>
<td>67.3</td>
<td>81.4</td>
<td>84.2</td>
<td>65.6</td>
</tr>
<tr>
<td>β-strand 2</td>
<td>51–53</td>
<td>94.0</td>
<td>74.6</td>
<td>48.6</td>
<td>69.3</td>
<td>82.2</td>
<td>88.3</td>
<td>77.6</td>
</tr>
<tr>
<td>β-strand 3</td>
<td>58–59</td>
<td>83.1</td>
<td>90.0</td>
<td>27.3</td>
<td>84.4</td>
<td>79.3</td>
<td>86.1</td>
<td>63.3</td>
</tr>
</tbody>
</table>

α-the average helicity (H) and the average β-strand content (B) for each α-helix and β-strand were calculated, respectively. As shown in Table 1, both (H) and (B) decreased with increasing temperature. Usually, both (H) and (B) were markedly higher when HEWL was treated with sCO2, except for α-helix 4. In water environment, the destruction of the secondary structure in the α-domain followed the order of 4 → 1 → 2 → 3. α-Helix 4 unfolded first probably because it is located on the surface of this domain. α-Helix 1 unfolded from its N-terminus because its C-terminus is protected by the hydrophobic core through the interaction with M12, L25, and W28 (Figure 3). In α-helices 2 and 3 were stabilized by the disulfide bridge located in the interior of this domain. In α-helix 3 unfolded from its C-terminus, which is consistent with the work by Kazimirshii and Daggett (55). The secondary structure content in the β-domain is less than that in the α-domain, and thus the structural integrity of this domain may not be a result of the stability of the secondary structure in this domain. Whereas β-strand 1 is located outside this domain, β-strands 2 and 3 are located in the interior near the catalytic cleft (Figure 1). The disulfide bond formed by Cys64 and Cys80 is more or less responsible for maintaining the structural integrity of the β-domain during the simulations conducted in this study. Furthermore, as shown in Figure 6, five residues, Gly54, Ile55, Leu58, Ile60, and Leu83, form a hydrophobic core around this disulfide bond, which in turn helps to stabilize the structure of the β-domain.

Figure 7 shows the snapshots of HEWL during various MD simulations conducted in this study. The secondary structure propensity of HEWL was predicted according to DSSP (57) during the entire MD course, and the results are shown in Figure 8. It is obviously that pretreatment of HEWL with sCO2 can stabilize the
secondary structures to a great extent, particularly at 600 K, as a result of the solvent effect. In solvent of lower polarity, hydrophobic interactions stabilizing the native structure are weakened, and simultaneously the local hydrogen bonds are strengthened, resulting in stabilization of the secondary structures. In other words, the weaker dielectric constant of sCO2 possibly reduces the hydrogen bonding between amide protons and surrounding solvent molecules and simultaneously promotes the intramolecular hydrogen bonding in the secondary structures and therefore stabilizes them. The effect of sCO2 on stabilizing the secondary structures of HEWL is most likely due to its ability to form clusters on the surface of HEWL effectively, favoring the formation of intramolecular hydrogen bonds instead of intermolecular hydrogen bonds and promoting the formation of stable secondary structures. The snapshots from various MD simulations also indicate that the α- and β-domains probably unfolded independently, which is consistent with the previous findings that the first step in unfolding of lysozyme is an “unlocking” of the two independent folding/unfolding domains (69), the reverse of the final step of folding (11). Furthermore, the present results, in which HEWL lost most of its secondary structure in water at 600 K at the end of 400 ps MD simulation, are in good agreement with the findings by Mark and van Gunsteren (22), where unfolding of HEWL proceeds via a metastable molten globulelike state, though with relatively little secondary structure.

In conclusion, the structural integrity of HEWL can be successfully enhanced by pretreatment with sCO2 by backbone RMSD, radius of gyration, and secondary structure analyses. The critical pressure of sCO2 is not high enough to cause the structural denaturation of HEWL. The stabilizing effect of supercritical CO2 is likely due to reduced polarity of the solvent, where hydrophobic interactions stabilizing the native structure are weakened and simultaneously the local hydrogen bonds are strengthened, resulting in stabilization of the secondary structures. The hydrophobic cores in these two domains play an important role in preventing HEWL from thermal unfolding. As sCO2 has been attractive for biomedical applications because of the advantages of mild critical condition, nonflammability, nontoxity, and the purity of the resulting products, the structural stabilizing effect found in this study suggests that it is possible to increase the thermostability of HEWL by pretreatment with sCO2, resulting in better industrial applications of this protein.

Acknowledgment

The authors thank the National Science Council of Taiwan for financial support (project NSC 92-2214-E-027-009).

References and Notes

(9) Dickerson, R. E.; Reddy, J. M.; Pinkerton, M.; Steinrauf, L. K. Structure of lysozyme. A Fourier map of the electron

Accepted for publication January 13, 2004.

BP034313K