• 首頁
    Home
  • 發表
    Publications
  • 指導教授
    Professor
  • 研究方向
    Research
  • 成員
    Members
  • 活動
    Activities

 

 

狂賀  恭喜本實驗室 榮獲2017光寶創新獎「技術創新組」金賞!!

 

 

 

 

 

 

2017

 

恭喜張家豪同學 榮獲2017光寶創新獎「技術創新組」金賞!!

 

恭賀陳麒安同學 榮獲2017年陶瓷年會論文競賽大專生組第二名

恭賀張家豪同學 榮獲2017年陶瓷年會論文競賽碩士組入圍

恭賀楊庭懿同學 碩士班甄試錄取國立台灣大學 材料科學與工程學系碩士班

恭賀劉魏溢同學 碩士班考試錄取國立成功大學 材料科學與工程學系碩士班

恭賀李嘉甄 老師榮獲2017年工程學院傑出研究獎!!

 

 

2016

 

恭賀 New Publication 於高品質期刊 Chemistry of Materials (SCI, IF 9.407, 15/271)

恭賀鄒侑儒同學 榮獲2016年材料創新獎入圍決賽
參加材料、陶業、礦冶年會

恭賀陳嬿昕同學 碩士班考試錄取國立台灣大學 材料科學與工程學系碩士班

恭賀陳致賢同學 榮獲2016年光寶創新獎技術組入圍決賽

恭賀李嘉甄 老師榮獲105年陶瓷年會傑出服務獎!!

 

 

2015

 

參加材料年會

恭賀郭銘書同學 榮獲103年度陶業年會論文競賽奈米陶瓷組第二名

恭賀張家豪同學 碩士班甄試錄取國立台北科技大學 材料工程學系碩士班

恭賀劉柏亨同學 碩士班甄試錄取國立清華大學 奈米工程與微系統學系碩士班

恭賀王崇軒同學 碩士班甄試錄取國立台灣大學 材料科學與工程學系碩士班

 

 

2014

 

參加材料、陶業、礦冶年會

恭賀董芝安同學 碩士班甄試錄取國立清華大學 材料工程學系碩士班

恭賀陳柏瑋同學 碩士班甄試錄取國立清華大學 奈米工程與微系統學系碩士班

恭賀王霆鈞同學 碩士班考試錄取國立台灣大學 材料科學與工程學系碩士班

 

 

2013

 

參加材料、陶業、礦冶年會

參加工研院期中報告

舉辦實驗室所有成員聚會

恭賀董芝安同學 榮獲金手獎第三名

恭賀蔡志辰同學 碩士班考試錄取國立清華大學 工程與系統科學系碩士班

恭賀洪靚軒同學 碩士班考試錄取國立清華大學 工程與系統科學系碩士班

恭賀黃俞碩同學 碩士班考試錄取國立中央大學 材料科學與工程學系碩士班

恭賀李嘉甄 老師榮獲2013年工程學院傑出研究獎!!

 

 

2012

 

參加材料、陶業、礦冶年會

舉辦實驗室所有成員聚會

恭賀蔡志辰同學 申請國科會大專生參與專題研究計畫審查通過

恭賀蘇凡均同學 碩士班考試錄取國立中央大學 化學工程與材料工程學系碩士班

恭賀紀卉彥同學 碩士班考試錄取國立中央大學 化學工程與材料工程學系碩士班

恭賀李嘉甄 老師榮獲2012年工程學院優等研究獎!!

恭賀李嘉甄 老師榮升教授!!

 

 

2011

 

參加礦冶年會

舉辦冬至湯圓之夜

與中山大學化學系材料化學實驗室交流

恭賀林書緯同學 碩士班甄試錄取國立交通大學 加速器光源科技與應用碩士學位學程

 

 

2010

 

恭賀程羿穆同學 榮獲99年度國科會專題研究計畫研究創作獎!!

恭賀楊庭喻同學 參與礦冶年會得到佳作

恭賀劉俊甫同學 申請國科會大專生參與專題研究計畫審查通過

恭賀劉家佩同學 申請國科會大專生參與專題研究計畫審查通過

恭賀程羿穆同學 申請國科會大專生參與專題研究計畫審查通過

恭賀程羿穆同學 碩士班甄試錄取國立台灣大學 材料科學與工程研究所

恭賀劉家珮同學 碩士班甄試錄取國立中央大學 材料科學與工程研究所

恭賀劉俊甫同學 碩士班甄試錄取國立清華大學 奈米工程與微系統研究所

恭賀楊庭喻同學 碩士班甄試錄取國立成功大學 資源工程研究所

 

 

2009

 

恭賀顏秉生同學 申請國科會大專生參與專題研究計畫審查通過

恭賀彭杏威同學 榮獲98年中華民國陶業研究學會海報論文優等獎碩士組第一名

恭賀顏秉生同學 碩士班甄試錄取國立清華大學 材料科學與工程研究所

恭賀王雅慧同學 碩士班甄試錄取國立台北科技大學 材料科學與工程研究所

 

 

2008

 

恭賀潘昭璇同學 申請國科會大專生參與專題研究計畫審查通過

恭賀張嘉芝同學 申請國科會大專生參與專題研究計畫審查通過

恭賀潘昭璇同學 碩士班甄試錄取國立清華大學 材料科學與工程研究所

恭賀賴淑萍同學 碩士班甄試錄取國立清華大學 工程與系統科學研究所

恭賀林宣萱同學 碩士班甄試錄取國立清華大學 工程與系統科學研究所

恭賀張嘉芝同學 碩士班甄試錄取國立中興大學 材料科學與工程研究所

 

 

2007

 

恭賀朱永如同學 申請國科會大專生參與專題研究計畫審查通過

恭賀邱祺瑾同學 申請國科會大專生參與專題研究計畫審查通過

恭賀廖為盛、邱祺瑾同學 榮獲96年中華民國陶業研究學會海報論文優等獎

恭賀朱永如同學 碩士班甄試錄取國立清華大學 材料科學與工程研究所

恭賀粘志鴻同學 碩士班甄試錄取國立中山大學 材料與光電工程研究所

恭賀邱祺瑾同學 碩士班甄試錄取國立中山大學 材料與光電工程研究所

 

 

2006

 

恭賀董怡伶同學 申請國科會大專生參與專題研究計畫審查通過

恭賀董怡伶同學 榮獲95年中國材料科學會壁報論文優等獎

恭賀董怡伶同學 碩士班甄試錄取國立清華大學 材料科學與工程研究所

恭賀彭杏威同學 碩士班甄試取國立台北科技大學 材料科學與工程研究所

 

 

 

 

Chia-Chen Li*, Ming-Jyun Li, Yung-Pin Huang,

Dispersion of aluminum-doped zinc oxide nanopowder in non-aqueous suspensions,

J Am Ceram Soc, DOI: 10.1111/jace.15030, 2017. (SCI, IF 2.787, Rank 2/27, 7.4%)

 

Chia-Chen Li*, Shinn-Jen Chang, Chi-Wei Wu, Cha-Wen Chang, Ruo-Han Yu,

Newly designed diblock dispersant for powder stabilization in water-based suspensions,

Journal of Colloid and Interface Science, 506, 180–187, 2017. (SCI, IF 4.233, Rank 35/145, 24.1%)

 

Chia-Chen Li*, Shinn-Jen Chang, Chi-Wei Wu, Cha-Wen Chang,

Poly(methacrylate)-derived Diblock Dispersant for TiO2 in Aqueous Suspensions,

J Am Ceram Soc, DOI: 10.1111/jace.15039, 2017. (SCI, IF 2.787, Rank 2/27, 7.4%)

 

Chia-Chen Li*, Dzu-How Yu, Shinn-Jen Chang, Jia-Wei Chen,

New Approach for the Synthesis of Nanozirconia Fortified Microcapsules,

Langmuir, 33 [23] 5843–5851, 2017. (SCI, IF 3.993, Rank 46/271, 16.9%)

 

Chia-Chen Li*, Chi-An Chen, Meng-Fu Chen,

Gelation Mechanism of Organic Additives with LiFePO4 in the Water-based Cathode Slurries,

Ceram. Int., DOI: 10.1016/j.ceramint.2017.05.315, 2017. (SCI, IF 2.758, Rank 3/27, 11.1%)

 

Pei-Hsuan Huang, Shinn-Jen Chang, Chia-Chen Li*,

Encapsulation of flame retardants for application in lithium-ion batteries,

J. Power Sources, 338, 82-90, 2017. (SCI, IF 6.333, Rank 2/27, 7.4%)

 

Pei-Hsuan Huang, Shinn-Jen Chang, Chia-Chen Li*, Chi-An Chen,

Boehmite-based Microcapsules as Flame-retardants for lithium-ion batteries,

Electrochimica Acta, 228, 597-603, 2017. (SCI, IF 4.803, Rank 4/28, 14.2%)

 

Chia-Chen Li*, Shinn-Jen Chang, Chi-An Chen,

Effects of sp2- and sp3-carbon coatings on dissolution and electrochemistry of water-based LiFePO4 cathodes,

J Appl Electrochem, 47 [9] 1065-1072, 2017. (SCI, IF 2.235, Rank 15/29, 51.7%)

 

Chia-Chen Li*, Wei-I Liu, Yen-Shin Chen,

Efficient Dispersants for the Dispersion of Gallium Zinc Oxide Nanopowder in Aqueous Suspensions,

J. Am. Ceram. Soc., 100, 920–928, 2017. (SCI, IF 2.787, Rank 2/27, 7.4%)

 

Chia-Chen Li*, Jia-Hao Jhang, Hsin-Yi Tsai, Yung-Pin Huang,

Water-soluble Polyethylenimine as an Efficient Dispersant for Gallium Zinc Oxide Nanopowder in Organic-based Suspensions,

Powder Technol., 305, 226-231, 2017. (SCI, IF 2.759, Rank 26/135, 19.2%)

 

Ting-Yi Yang, Shinn-Jen Chang, Chia-Chen Li*, and Pei-Hsuan Huang,

Selectivity of Hydrophilic and Hydrophobic TiO2 for Organic-based Dispersants,

J. Am. Ceram. Soc., 100, 56–64, 2017. (SCI, IF 2.787, Rank 2/27, 7.4%)

 

Chia-Chen Li*, Sheng Yang, Yu-Ju Tsou, Jyh-Tsung Lee, Chang-Ju Hsieh,

Newly Designed Copolymers for Fabricating Particles with Highly Porous Architectures,

Chem. Mater., 28 [17] 6089–6095, 2016. (SCI, IF 9.407, Rank 15/271, 5.5%)

 

J. J. Yang, C. C. Li, Y. F. Yang, C. Y. Wang, C. H. Lin, J. T. Lee*,

Superparamagnetic core–shell radical polymer brush as efficient catalyst for oxidation of alcohols to aldehydes and ketones,

RSC Adv., 6, 63472-63476, 2016. (SCI, IF 3.289, Rank 49/163, 30%)

 

R. Rohan; T. C. Kuo, J. H. Lin, Y. C. Hsu, C. C. Li, J. T. Lee*,

Dinitrile–Mononitrile-Based Electrolyte System for Lithium-Ion Battery Application with theechanism of Reductive Decomposition of Mononitriles,

J. Phys. Chem. C, 120 [12] 6450–6458, 2016. (SCI, IF 4.509, Rank 40/271, 14.7%)

 

M.S. Kuo, S.J. Chang, P.H. Hsieh, Y.C. Huang, C.C. Li*,

Efficient Dispersants for TiO2 Nanopowder in Organic Suspensions,

J. Am. Ceram. Soc., 99 [2] 445-451, 2016. (SCI, IF 2.787, Rank 2/27, 7.4%)

 

F.Y. Tsai, J.H. Jhang, H.W. Hsieh, C.C. Li*,

Dispersion, Agglomeration, and Gelation of LiFePO4 in Water-based Slurry,

J. Power Sources, 310, 45-53, 2016. (SCI, IF 6.333, Rank 2/27, 7.4%)

 

T.H. Ho, S.J. Chang, C.C. Li*,

Effect of Surface Hydroxyl Groups on the Dispersion of Ceramic Powders,

Mater. Chem. Phys., 172, 1-5, 2016. (SCI, IF 2.101, Rank 97/271, 35.7%)

 

G.W. Lai, S.J. Chang, J.T. Lee, H. Liu, C.C. Li*,

Conductive Microcapsules for Self-healing Electric Circuits,

RSC Adv., 5, 104145-104148, 2015. (SCI, IF 3.289, Rank 49/163, 30%)

 

Shinn-Jen Chang, Chih-An Tung, Bo-Wei Chen, Yi-Chun Chou, Chia-Chen Li*,

Synthesis of Non-oxidative Copper Nanoparticles,

RSC Adv., 3, 24005–24008, 2013. (SCI, IF 3.289, Rank 49/163, 30%)

 

Jyh-Cheng Tsai, Feng-Yen Tsai, Chih-An Tung, Han-Wei Hsieh, Chia-Chen Li*,

Gelation or dispersion of LiFePO4 in water-based slurry?

J. Power Sources, 241, 400-403, 2013. (SCI, IF 6.333, Rank 2/27, 7.4%)

 

Chia-Chen Li*, Ya-Whei Wang,

Importance of binder compositions to the dispersion and electrochemical properties of water-based LiCoO2 cathodes,

J. Power Sources, 227, 204-210, 2013. (SCI, IF 6.333, Rank 2/27, 7.4%)

 

Yi-Ping Liang, Chia-Chen Li, Wen-Jing Chen, Jyh-Tsung Lee*,

Hydrothermal synthesis of lithium iron phosphate using pyrrole as an efficient reducing agent,

Electrochim. Acta, 87, 763-769, 2013. (SCI, IF 4.803, Rank 3/27, 11.1%)

 

Chia-Chen Li*, Chung-Hsuan Chang,

Gelation and degelation of PVA in aqueous BaTiO3 slurries,

J. Am. Ceram. Soc., 96 [2] 436–441, 2013. (SCI, IF 2.787, Rank 2/27, 7.4%)

 

Chia-Chen Li*, Shinn-Jen Chang, Fan-Jun Su, Shu-Wei Lin, Yi-Chun Chou,

Effects of capping agents on the dispersion of silver nanoparticles,

Colloids Surf. A, 419, 209-215, 2013. (SCI, IF 2.760, Rank 56/144, 38.8%)

 

Chia-Chen Li*, Yu-Sheng Lin,

Interactions between organic additives and active powders inwater-based lithium iron phosphate electrode slurries,

J. Power Sources, 220, 413-421, 2012. (SCI, IF 6.333, Rank 2/27, 7.4%)

 

Yen-Yao Cheng, Chia-Chen Li, Jyh-Tsung Lee*,

Electrochemical behavior of organic radical polymer cathodes in organic radical batteries with N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid electrolytes,

Electrochim. Acta, 66, 332–339, 2012. (SCI, IF 4.803, Rank 3/27, 11.1%)

 

C.C. Li*, Y.H. Wang,

Binder Distributions in Water-based and Organic-based LiCoO2 Electrode Sheets and Their Effects on Cell Performance,

J. Electrochem. Soc., 158 [12] A1361-A1370, 2011. (SCI, IF 3.014, Rank 2/18, 11.1%)

 

Hsiao-Chien Lin, Chia-Chen Li, Jyh-Tsung Lee*,

Nitroxide polymer brushes grafted onto silica nanoparticles as cathodes for organic radical batteries,

J. Power Sources, 196, 8096-8103, 2011. (SCI, IF 6.333, Rank 2/27, 7.4%)

 

Chia-Chen Li*, Ya-Hui Wang, Ting-Yu Yang,

Effects of Surface-coated Carbon on the Chemical Selectivity for Water-Soluble Dispersants of LiFePO4,

J. Electrochem. Soc., 158 [7] A828-A834, 2011. (SCI, IF 3.014, Rank 2/18, 11.1%)

 

Chia-Chen Li*, Shinn-Jen Chang, Ming-Yu Tai,

Effects of Compositional Impurity on Surface Chemistry of TiO2Nanopowder and its Chemical Interactions with Dispersants,

Mater. Chem. Phys., 131, 400-405, 2011. (SCI, IF 2.101, Rank 97/271, 35.7%)

 

Chia-Chen Li*, Shinn-Jen Chang, Ming-Yu Tai,

Surface Chemistry and Dispersion Property of TiO2 Nanoparticles,

J. Am. Ceram. Soc., 93 [12] 4008–4010, 2010. (SCI)

 

Chia-Chen Li*, Yi-Chen Lee, Yi-Mu Cheng,

Effects of Interactions Among BaTiO3, PVA, and B2O3 on the Rheology of Aqueous BaTiO3 Suspensions,

J. Am. Ceram. Soc., 93 [10] 3049–3051, 2010. (SCI)

 

Jyh-Tsung Lee*, Fu-Ming Wang, Chin-Shu Cheng, Chia-Chen Li, Chun-Hao Lin,

Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries,

Electrochim. Acta, 55, 4002–4006, 2010. (SCI)

 

Chia-Chen Li*, Chun-Lung Huang,

Preparation of Clear Colloidal Solutions of Detonation Nanodiamond in Organic Solvents,

Colloids Surf. A, 353, 52–56, 2010. (SCI)

 

Chia-Chen Li*, Xing-Wei Peng, Jyh-Tsung Lee, Fu-Ming Wang,

Using Poly(4-Styrene Sulfonic Acid) to Improve the Dispersion Homogeneity of Aqueous-Processed LiFePO4 Cathodes,

J. Electrochem. Soc., 157 [4], A517-A520, 2010. (SCI)

 

Shinn-Jen Chang, Chia-Chen Li*, Wei-Sheng Liao, Jyh-Tsung Lee,

Efficient Hydroxylation of BaTiO3 Nanoparticles by Using Hydrogen Peroxide,

Colloids Surf. A, 361, 143–149, 2010. (SCI)

 

Shinn-Jen Chang, Wei-Sheng Liao, Ci-Jin Ciou, Jyh-Tsung Lee, Chia-Chen Li*,

An Efficient Approach to Derive Hydroxyl Groups on the Surface of Barium Titanate Nanoparticles to Improve Its Chemical Modification Ability,

J. Colloid Interface Sci., 329, 300–305, 2009. (SCI)

 

Jyh-Tsung Lee, Yung-Ju Chu, Xing-Wei Peng, Fu-Ming Wang, Chang-Rung Yang, Chia-Chen Li*,

A novel and efficient water-based composite binder for LiCoO2 cathodes in lithium-ion batteries,

J. Power Sources, 173, 985–989, 2007. (SCI)

 

Jyh-Tsung Lee, Yung-Ju Chu, Fu-Ming Wang, Chang-Rung Yang, Chia-Chen Li*,

Aqueous processing of lithium-ion battery cathodes using hydrogen peroxide-treated vapor-grown carbon fibers for improvement of electrochemical properties,

J. Mater. Sci., 42 [24] 10118-10123, 2007. (SCI)

 

J. T. Lee*, M. S. Wu, F. M. Wang, H. W. Liao, C. C. Li, S. M. Chang, C. R. Yang,

Gel Polymer Electrolytes Prepared by in situ Atom Transfer Radical Polymerization at Ambient Temperature,

J. Electrochem. Solid-State Lett. 10, A97, 2007. (SCI)

 

Chia-Chen Li*, Jen-Lien Lin, Shu-Jiuan Huang, Jyh-Tsung Lee, Ci-Huei Chen,

A New and Acid-exclusive Method for Dispersing Carbon Multi-Walled Nanotubes in Aqueous Suspensions,

Colloids Surf. A, 297, 275-281, 2007. (SCI)

 

Jen-Chieh Liu, Jau-Ho Jean*, Chia-Chen Li,

Dispersion of nano-sized g-alumina powder in non-polar solvents,

J. Am. Ceram. Soc., 89 [3] 882-887, 2006. (SCI)

 

Chia-Chen Li*, Jyh-Tung Lee, Xing-Wei Peng,

Improvements of Dispersion Homogeneity and Cell Performance of Aqueous-Processed LiCoO2 Cathodes by Using Dispersant of PAA-NH4,

J. Electrochem. Soc., 153 [5] A809-A815, 2006. (SCI)

 

Chia-Chen Li*, Jyh-Tsung Lee, Yi-Ling Tung,

Effects of pH on the Dispersion and Cell Performance of LiCoO2 Cathodes Based on the Aqueous Process,

J. Mater. Sci., 42, 5773-5777, 2006. (SCI)

 

Chia-Chen Li*, Jyh-Tsung Lee, Chen-Yu Lo, Mao-Sung Wu,

Effects of PAA-NH4 Addition on the Dispersion Property of Aqueous LiCoO2 Slurries and the Cell Performance of As-Prepared LiCoO2 Cathodes,

Electrochem. Solid-State Lett., 8 [10] A509-A512, 2005. (SCI)

 

Chia-Chen Li, Jau-Ho Jean*,

Effects of Ethylene Glycol, Thickness, and B2O3 on PVA Distribution in Dried BaTiO3 Green Tape,

Mater. Chem. Phys., 94 [1] 78-86, 2005. (SCI)

 

Chia-Chen Li*, Mei-Whei Chang,

Colloidal Stability of CuO Nanoparticles in Alkanes via Oleate Modifications,

Mater. Lett., 58, 3903-07, 2004. (SCI)

 

Chia-Chen Li, Jau-Ho Jean*,

Dissolution and Dispersion Behavior of Barium Carbonate in Aqueous Suspensions,

J. Am. Ceram. Soc., 85 [12] 2977-83, 2002. (SCI)

 

Chia-Chen Li and Jau-Ho Jean*,

Interaction Between Dissolved Ba2+ and PAA-NH4 Dispersant in Aqueous BaTiO3 Suspensions,

J. Am. Ceram. Soc., 85 [6] 1449-55, 2002. (SCI)

 

Chia-Chen Li, Jau-Ho Jean*,

Interactions of Organic Additives with Boric Oxide in Aqueous Barium Titanate Suspensions,

J. Am. Ceram. Soc., 85 [6] 1441-48, 2002. (SCI)

 

李嘉甄 教授

Chia-Chen Li

Professor

 

2012.02-                 Professor

2013.07-2014.08      Visiting scholar at University of Illinois at Urbana-Champaign

2007.02-2012.02   Associate Professor

2004.08-2007.02   Assistant Professor

 

Contact Information

Office: 507-2 MMRE Building

E-mail: ccli@ntut.edu.tw

Phone: 02-27712171-2761

Fax: 02-87733742

 

Degree

Ph.D.    Materials Science and Eng., National Tsing Hua University

 

Research Interests

-- Microcapsules

-- Synthesis of inorganic nanopowders

-- Dispersion of nanomaterials

-- Nanocomposites

-- Energy-storage materials for Li-ion battery

 

 

 

 

 

 

 

Porous Microspheres

 

 

A new type of designed copolymers has been synthesized for the formation of porous polymeric microspheres. The copolymers contain hydrophobic (styrene, methyl methacrylate, vinylbenzyl chloride, or vinylbenzyl ethyl ether) and hydrophilic (vinylbenzyl alcohol) repeating units. Since the specially designed copolymers have unique chemical and physical properties, the porous structure can be easily accomplished by a facile single-step process. The resulting porous microspheres exhibit good morphological quality, showing open pore structure with a pore size ranging from submicrometer to micrometer, by neither use of porogens nor the requirement of complicated multistep emulsifications. The discovery for the exceptional performance of pores in microspheres is exciting and groundbreaking. The chemical features of the proposed copolymers for the availability in the formation of porous architecture provide important insights into the design principle of high quality porous structures.

 

The zirconia crucible containing the black powder carbonized from the swelled PSV porous microspheres. Raman spectrum of porous carbon spheres prepared from swelled PSV microspheres (compared with commercial carbon black).

 

Compared to conventional dense materials, porous materials exhibit special features such as relatively low density, high surface area, light weight, sound and thermal insulation, and good permeating selectivity. These remarkable properties have made porous materials of great scientific and technological interest, enabling their use in a wide range of industrial applications and products, including efficient adsorbents for storage and controlled release, carriers for medicines and biomaterials, supports for conversion reactions, supercapacitors, batteries, solar power, and fuel cells. With an increased demand for new materials in surface-related applications, research into developing fabrication techniques for porous materials has increased. Among material types and architectures, polymeric porous spheres have been the highest developed, and they are also common precursors and templates for other materials like carbons, metals, and ceramics in the fabrication of porous structures.

 

 

 

 

 

ref. Chem. Mater., 28 [17], 6089–6095, 2016.


 

MicroCapsules

 

Microcapsules have attracted attention in the field of novel and advanced materials due to their potential applications in hightech industries. The advantage of encapsulating specific materials in the core of a microcapsule is that the core materials can be quarantined to function only at the right time, i.e. they will remain stable inside the microcapsule until they are triggered. Due to wide variety of species available for the core materials, microcapsules have the potential to be employed in a wide industrial products, for instance, food and cosmetic additives, drug delivering carriers for bio-material and medicine fields, self-healing additives for microstructural and functional restorations and so on. Among these applications, the self-healing function of microcapsules has attracted the most interest in recent decades. The research team of Scott R. White et al. was the first to reveal the potential for utilizing microcapsules as self-healing materials. From their report in 2001, they successfully embedded the microcapsules of poly(urea–formaldehyde) (PUF) in resin which was cast on the surface of a certain substrate that needs to be protected or be able to restore itself as needed. Based on the healing mechanism, not only the structural fracture but other physical properties such as anti-corrosion or electrical conductivity can also be spontaneously restored.

 

 


 

Cross-sectional SEMimage of a broken microcapsule embeddedin resin, shell thickness about 50-100 nm

SEM images of (a)microcapsules (b)microcapsules with Ag coated (c)Aqueous suspensions of microcapsules (left) and Ag-coated microcapsules.

 

 


 

Since the shell of most microcapsules is primarily polymeric which is mechanically soft and less compatible with lots of inorganic materials, the utilization of microcapsules is generally circuitous; the microcapsules are embedded in a polymeric film on the top of the target substrate that needs the self-healing function. This is especially true when the substrate is a metal- or ceramic-based material because of the very different surface tensions. This procedure makes the use of microcapsules complicated and limits their use in other applications. On the other hand, the triggering force may decay during transmission and only the microcapsules near the interface between the polymer and the target substrate have the opportunity to function, while those embedded far from the interface will become useless. To make the use of microcapsules more convenient and more efficient in the healing process, wastage of microcapsules should be reduced and they should be buried directly in the target substrate.

 


 

(a) Variation in current before and after being damaged for three circuits with and without embedded 20vol% of PUF-C20 and Ag@mPUF-C20 microcapsules under a consstant applied voltage of 1 V. Schematic mechanism for restoration: (b1) direct embedding of microcapsules (green) in the Ag-based circuit matrix (gray) on a glass substrate (light blue); (b2) healing material in the core after damaged; (b3) melted healing material released; (b4) damaged recovered from both fillings of the Ag particles rearranged from the matrix and the re-solidified healing material. (c) Cross-sectional SEM image of recovered zone near the interface between the Ag matrix and glass for the microcapsules embedded circuit.

 


 

(a)Diagram of cracks may not be completely recovered when microcapsules are poorly distributed. (b) This diagram shows the high probability for cracks being restored when microcapsules are well-dispersed.

 

 

 

ref.  RSC Adv., 5, 104145-104148, 2015.


 

 

Li-ion Batteries

 

Ever since lithium iron phosphate (LiFePO4) was reported as a potential cathode-active material for a lithium-ion battery by Goodenough and his coworkers in 1997, it has attracted widespread attention and been extensively studied during the past decade. The advantages of the olivine-structured LiFePO4 include a large theoretical capacity, good lifecycle performance, and safety. The excellent structural stability of LiFePO4, which results from strong Fe-P-O bonds, also greatly increases its thermal stability at high temperatures in its fully charged state. In addition, the low cost and toxicity of LiFePO4 owing to its environmentally compatible constituents make it a promising cathode active material for large batteries.

 

 

Li-ion battery structure

ref: J. Mater. Chem. A, 2015, 3, 2454-2484

 

hybrid circuit co-fired ceramics

ref:wiki

nano-LiFePO4

 

 


 

LiFePO4 has some disadvantages, such as poor electrical conductivity (~10-9 cm-1) and the diffusion of lithium ions (Li+) in LiFePO4. These issues result in losses in capacity and rate capability and thus hinder the commercial application of LiFePO4. The use of fine LiFePO4 particles has been proposed to improve Li+ diffusion. Furthermore, surface coating with a conductive material is a commonly used approach to enhance the electrical conductivity of LiFePO4. Among the various possible conductive coating materials, carbon is the most prevalent because of its high chemical stability. Commercially produced LiFePO4 powders are available with a varying amount of carbon content that typically ranges from 1 to 5 wt% because of the differences in techniques used for the synthesis of LiFePO4. For the fabrication of electrodes, electrode materials are typically mixed using either a water-based (aqueous) or solvent-based (non-aqueous) process. The aqueous process is gaining favor and has attracted significant interest because of its environmental consistency and cost considerations. However, the aqueous process has a drawback, i.e., the agglomeration of most oxides, including LiFePO4; until now, the only efficient approach to prevent powder agglomeration has been the addition of an appropriate dispersant to the system. Furthermore, several reports have noted that not all commercial LiFePO4 powders exhibit the same dispersity in aqueous slurries, i.e., notable differences in the dispersion properties of the aqueous slurries prepared with powders from different production lots made by the same supplier may be observed. This variety in the dispersity of LiFePO4 powder in water is an important issue that has caused great concern in LiFePO4-related industries. In addition, the indeterminate dispersity of the powders may cause end users to manipulate them imprecisely resulting in unsuitable electrode slurries. Typical commercially available LiFePO4 powders are obtainable as both dispersions and gels in water. Dispersible LiFePO4 (D-LFP) and gelled LiFePO4 (G-LFP) are two such LiFePO4 powders with the same physicochemical properties of crystallinity, a median particle size (d50) of 2.2 mm, and an approximate carbon content of 1.07-1.20 wt%; these powders were acquired from the same supplier. When we processed them in water by adding the same ingredients, different distinctive flow behaviors of the as-prepared aqueous slurries were observed. The aqueous slurry prepared from the D-LFP powder shows fluidity, whereas the slurry from G-LFP resembled a jelly-like gel. As the formation of powder gel will be detrimental to the electrode-manufacturing process, especially for the slurry-sieving and slurry-casting steps, understanding the cause for the deviation in the dispersity of powders is essential and a prerequisite.

 

Schemes for (a)H-bondings between carbon-coated G-LFP particles and (b) gelation mechanism of G-LFP due to the bridging of SCMC.

 

 

 

 

ref.  J. Power Sources, 310, 45-53, 2016.


 

 

Dispersion

 

 

Titania (TiO2) is an important and widely used material in industries ranging from traditional to highly technical because of its attractive and extensive physicochemical properties. TiO2 must be compatible with other materials for it to distribute homogeneously in composites and for it to be useful in various applications. Therefore, the dispersity of TiO2, which is determined by its surface properties, is an important issue that was examined in past decades. Commercial TiO2 nanopowders usually exhibit a variety of surface properties. For instance, they show acid–base properties that vary with the manufacturer and production process. Different manufacturers or manufacturing processes may use a variety of dopants for TiO2 to modify or improve its physicochemical properties, such as thermal stability and chemical activity. As a result, the surface chemistries of commercial TiO2 are frequently unclear, making it difficult to control its dispersion.

 

 

ref.  J. Am. Ceram. Soc. in press, 2016.


 

 

Nano materials

 

nano-diamond

nano-diamond suspension

nano-diamond suspension (after being dispersed)

BaTiO3@SiO2 core-shell

nano-BaTiO3 (after being dispersed)

nano-silver
   

nano-silver (after dispersion)

   

 

 


 

 

Composite Materials

 

     
     
     
     

 


 

 

 

 

實驗室成員

 

研究生

 

藍筠茹

興趣:看書、看電影、遛狗遛貓

鄒侑儒

興趣:看影集、打籃球

張家豪

興趣:看影集

卓泉勝

興趣:慢跑

張瑜庭

興趣:打電動

陳家尉

興趣:睡覺

 

專題生

 

陳麒安

興趣:爬山、機械、發呆、鋼琴、小提琴、看電影

李明駿

興趣:出任務

吳琦瑋

興趣: 

張偉晟

興趣:音樂

金仁冕

興趣: 

黃凌萱

興趣: 

王嘉樂

興趣: 

 

 

 

畢業學生

 

研究生

 

游子澔

興趣:唱歌 希哲

畢業動向:

陳致賢

興趣:打籃球 彈吉他 養狗

畢業動向:

黃佩瑄

興趣:聽音樂

畢業動向:

廖為盛

興趣:看電影 到處晃 測Zeta

研究題目:無機-有機複合材料之合成與研究

畢業動向:日月光

彭杏威

興趣:做料理 吃美食

研究題目:水系分散劑對鋰鈷氧電極極板之分散均勻性及電化學性能的影響

畢業動向:台灣積體電路製造股份有限公司

黃俊龍

興趣:閱讀 打球

研究題目:化學改質多層奈米碳管於有機溶劑中之分散性質研究

畢業動向:清華大學材料博士班

戴銘佑

興趣:看日劇 看電影 打球

研究題目:奈米粉體經表面處理後於有機溶劑的分散研究

畢業動向:旭泰化工研究員

郭明仁

興趣:滑雪

研究題目:添加高分子電解質對於鈦酸鋇分散性質的影響

畢業動向:

李怡臻

興趣:看書 聽音樂

研究題目:氧化硼與水系黏結劑之交互作用對鈦酸鋇分散性質的影響

畢業動向:力晶科技股份有限公司

林育生

興趣:看電影 逛美術館 畫漫畫 約會

研究題目:添加羧甲基纖維素鈉對鋰離子電池正極極板之黏附強度的影響

畢業動向:台灣積體電路製造股份有限公司

王雅慧

興趣:看小說 聽音樂 看布袋戲

研究題目:水系及有機系之黏結劑對鋰離子電池正極性質的影響

畢業動向:台灣立凱電能科技股份有限公司

蔡鋒諺

興趣:上網 買3C

研究題目:

畢業動向:台灣立凱電能科技股份有限公司

張中璿

興趣:看日劇 日本購物

研究題目:鈦酸鋇與聚乙烯醇及氧化硼之交互作用

畢業動向:研發替代役

郭銘書

興趣:movie music

研究題目:有機高分子型活物PTMA於油系漿料中之分散

畢業動向:工作

黃思絜

興趣:烹飪 閱讀 長笛 吃美食

研究題目:有機微膠囊的合成研究

畢業動向:群創光電

賀澤欣

興趣:ya

研究題目:Effect of water-based dispersant on the dispersion of hydroxylated BaTiO3

畢業動向:工作

江建宏

興趣:看日劇 聽音樂 動漫畫

研究題目:黏結劑之物理形態對鋰離子電池正極生胚組成均勻性的影響研究

畢業動向:美環太陽能光電

陳孟甫

興趣:

研究題目:增稠劑與水系磷酸鋰鐵漿料之膠化反應對電化學性質的影響

畢業動向:日月光

楊 昇

興趣:跳舞 畫畫

研究題目:苯乙烯共聚物多孔微球之製備方法研究

畢業動向:服兵役

賴冠宇

興趣:神魔之塔

研究題目:多功能化之導電性自我修復微膠囊研究

畢業動向:服兵役

 

 
專題生

 

楊庭懿

興趣:看卡通

研究題目:

蔡馨誼

興趣:看電影聽音樂看小說

研究題目:

劉魏溢

興趣:旅行 伴活動 彈鋼琴

研究題目:

林宣萱

興趣:看電影 聽音樂 玩貓

研究題目:不同分散劑改質之多層奈米碳管於有機溶劑中之分散性質研究

畢業動向:清華大學 工程與系統科學研究所

粘志鴻

興趣:看職棒 NBA 閱讀

研究題目:不同分散劑改質之多層奈米碳管於有機溶劑中之分散性質研究

畢業動向:中山大學 材料光電所

顏秉生

興趣:畫畫 慢跑 發呆

研究題目:

畢業動向:清華大學 材料科學與工程研究所

張嘉芝

興趣:看電影 聽音樂

研究題目:奈米粉體經表面處理後於有機溶劑的分散研究

畢業動向:友達

董怡伶

興趣:看電影

研究題目:H值對LiCoO2正極分散性質以及電化學性質的影響

畢業動向:清華大學 材料科學與工程博士班

邱祺瑾

興趣:塗鴉 電影

研究題目:奈米粉體經表面處理後於有機溶劑的分散研究

畢業動向:台積電

賴淑萍

興趣:到外地玩

研究題目:LiCoO2電極生胚之熱穩定性研究

畢業動向:台積電

潘昭璇

興趣:聽音樂 運動

研究題目:奈米粉體經表面處理後於有機溶劑的分散研究

畢業動向:台積電

朱永如

興趣:運動 看電影

研究題目:化學改質奈米碳纖維作為鋰鈷氧電極助導劑之研究

畢業動向:清華大學 材料科學與工程博士班

程羿穆

興趣:吃美食 出國旅遊 睡覺

研究題目:氧化硼與水系黏結劑之交互作用對鈦酸鋇分散性質的影響

畢業動向:台灣大學 材料研究所

楊庭喻

興趣:練樂團

研究題目:磷酸鋰鐵正極材料之分散機制研究

畢業動向:成功大學 資源研究所

劉俊甫

興趣:打羽毛球 釣魚

研究題目:水系黏結劑遷移率對於鋰鈷氧電池的電化學性質的影響

畢業動向:清華大學 奈米微生物研究所

劉家珮

興趣:唱歌 睡覺

研究題目:奈米鑽石高透明有機系懸浮液之製備

畢業動向:中央大學 材料研究所

蘇凡鈞

興趣:旅遊

研究題目:奈米銀的合成及其分散性質之研究

畢業動向:中央大學 化學工程與材料工程學系碩士班

林書緯

興趣:吃飯

研究題目:奈米銀的合成及其分散性質之研究

畢業動向:交通大學 加速器光源科技與應用碩士班

紀卉彥

興趣:聽音樂、唱歌、旅遊

研究題目:鈦酸鋇與聚乙烯醇及氧化硼之交互作用

畢業動向:中央大學 化學工程與材料工程學系碩士班

周怡君

興趣:看電影 旅遊

研究題目:in-jet 奈米銀墨水分

畢業動向:欣興電子

黃俞碩

興趣:打球 運動 看電影 看電視 上網

研究題目:黏結劑遷移對鋰離子漿料的影響

畢業動向:中央大學 材料科學與工程學系碩士班

洪靚軒

興趣:照顧樂樂 看鬼片

研究題目:銀與二氧化矽的界面反應

畢業動向:清華大學 工程與系統科學系碩士班

蔡志辰

興趣:看電影 吃美食

研究題目:水系磷酸鋰鐵之解離研究

畢業動向:清華大學 工程與系統科學系碩士班

董芝安

興趣:看電影 吃美食

研究題目:磷酸離鐵在水系漿料中的分散特性暨表面化學組成分析

畢業動向:清華大學 材料科學與工程學系碩士班

陳柏瑋

興趣:玩牌

研究題目:奈米導電銅微粉合成及分散

畢業動向:清華大學 奈米工程與微系統碩士班

王霆鈞

興趣:看電影 桌球 LOL

研究題目:奈米導電銀微粉合成及分散

畢業動向:台灣大學 材料科學與工程學系碩士班

楊庭安

興趣:看Paper之餘打電腦

研究題目:

畢業動向:

畢業動向:服兵役

陳劭恩

興趣:唱歌畫畫吃飯睡覺打東東

研究題目:核心材料與乳化劑種類對微膠囊性質影響暨微膠囊添加奈米二氧化鈦之研究

畢業動向:成功大學 材料科學與工程學系碩士班

王昱棠

興趣:聽音樂

研究題目:

楊婷婷

興趣:打電腦

研究題目:

畢業動向:台北科技大學 材料科學與工程學系碩士班

陳慧萍

興趣:唱歌跳舞打電腦

研究題目:

畢業動向:成功大學 材料科學與工程學系碩士班

陳嬿昕

興趣:

研究題目:影響TiO2分散行為的粉體表面物化特性分析和研究

王崇軒

興趣:

研究題目:阻燃劑DOPD微膠囊的製備及微膠囊在水性聚氨酯中的分散性質研究

劉柏亨

興趣:自行車 法國號

研究題目:自修復防蝕微膠囊之新型表面改質方式對分散性的影響

 

 

 

研究助理

 

廖育嬋

興趣:旅遊

   

 

 

 

 

 

 

 

 

 

 

 

Tel: 886-2-2771-2171 #2767

Address: 1,Sec. 3, Chung-Hsiao E. Rd. Taipei 106,Taiwan

10608 台北市大安區忠孝東路三段一號材資館201室